数理教育研究会

開成中学校 算数 問題解説&入試分析★2019年(H31年)

今回は開成中学をとりあげます。

【入試資料分析】
受験者数は例年通りでした。

受験者数1159人,合格者396人,倍率2.9

算数の合格者平均は易化した去年よりは下がりましたが、難易度が簡単というわけでもないところ7割6分と高く,特に高い処理能力が求められたように思います。

合格最低点218点
各教科の平均点は
(合格者平均 全体平均 満点)の順に
国語(50.1 43.6 85)
算数(64.6 51.0 85)
理科(65.2 61.7 70)
社会(52.1 48.3 70)

ハイレベルな難問というタイプではありませんが,初めて見るような問題をどうアプローチするか,典型的な問題の高いレベルでの習得が求められます。

【問題分析】
○大問1
速さの基本的な解法を組み合わせて解く問題です。
たくさん練習しておいて,正確に早く点数をとりたいところです。
kaisei_2019_m1-kaisetu1.jpg

ダイアグラムを書いて距離が同じとき,時間の比は速さの逆比になることで比をおいていきます。
K君がおばさんの家から引き返してS君に出会うまでと,S君に出会ってからおばさんの家につくまでの時間の比は
80:100=4:5
S君が自宅からおばさんの家までスイカを1つ持っていく時と,S君が自宅からおばさんの家までもし一人でスイカを2つ持っていくとかかる時間の比は
60:80=3:4
S君ちK君が出発して2個目のスイカをおばさんの家まで運び終わるまでの時間と,S君が自宅からおばさんの家までもし一人でスイカを2つ持っていくとかかる時間の比は
15:16
よって比合わせをして図の赤い数字のようになります。
(1)(④+⑤)÷㊽=3/16倍
(2)(距離の比)=(時間の比)×(速さの比)より
㊱×80:④×100=36:5で5/36倍です。
(3)(速さの比)=(距離の比)÷(時間の比)より
K君のスイカ1つの速さとS君のスイカ1つの速さの比は
36/㊱:(36-5)/(㊱+④)=40:31
よってS君のスイカ1つの速さの比は80×31/40=62m/分

○大問2
立体の切断と射影の問題です。
大問1に続き基礎的なことを組み合わせて解く問題で,しっかり練習しておいて素早く正確に解けるように仕上げる必要があります。
(1)
kaisei_2019_m2-kaisetu1.jpg

切断の基本的な解き方として例えばPRを延長して底面EFGHが乗っている平面との交点とQを結び、後は平行な面において切り口の直線が平行になるように書いていきます。
切り口は六角形になります。
次の問いのために12:9=4:3より図のように赤文字のところ長さ3cmとわかります。

(2)
kaisei_2019_m2-kaisetu2.jpg
前から見ると図の斜線部のようになるので長方形AEFBの面積は
228+12×9÷2+4×3÷2=288cm^2よりAE=228÷20=14.4cmとわかります。
次の問いのために14.4-9=5.4cm,5.4×4/3=7.2cmとだしておきます。

(3)
kaisei_2019_m2-kaisetu3.jpg

上から見ると図の黒い斜線部のようになり,青い斜線部は平行四辺形であることに注意してください。
赤文字のように12+7.2-4=15.2cmと長さがわかり
8:15.2=10:19,7.2:16=9:20なので赤文字のように⑩,⑲,⑨,⑳とそれぞれ長さがおけます。黒い斜線部の面積を考えて
20×㉙-8×⑩÷2-16×⑳÷2=266
より①=7/10よりAD=㉙=20.3cmとわかります

○大問3
この問題をとりあげようと思います。

○大問4
開成らしい初めて見る問題でどのようにアプローチしていくのか練習と,過去問を研究して心構えが出来てる必要があります。
最後の問題で時間も厳しく,そう簡単でもないので(2)(a),(b)くらいまでとれたら大問1,2,3でミスがあっても合格者平均のレベルを保てます。
アプローチは(1)のようにとりあえず具体的にやってみることです。
(1)
A12 B56 C78 D34 E9T [1]→
A1T B52 C76 D38 E94 [2]→
A1T B52 C76 D38 E94 [1]→
A19 B2T C65 D37 E48 [2]→
A× B× C65 D× E×

(2)(a)どこから手をつけていいかわかりにくいですが,とりあえずよくわからないままにやってみましょう。
限定的なことだけ考えればいいので結構できるもんです。
●[x]
最初の[1][2]の操作後のCはDに3がないと仮定すると最後にD38より3を持っているからCに3があったということになります。3が移動してくるには相方は3より小さい数1か2ですが1の場合は奇数同士で×になります。
なのでC23の場合しかないことがわかります。
●[y]
後半の[1][2]の操作後でDは3を受け取りD38になるので最初の[1][2]の操作後は8を持っていたことになります。
この時,相方は8より大きいので,9かTですがTの場合は偶数同士で×になります。
よってD89しかありません。
●[z]
最初の[1][2]の操作後でC23 D89なので一番初めはCの小さい方の数は2か3のどちらか,Cの大きい方の数は8か9のどちらかですが偶数同士、奇数同士では×になるので
一番最初はC29かC38しかないことがわかります。
(b)これもどこから手をつけたいいかわからないように見えてよくわからないままにやると限定的なことだけ考えればいいので意外とわかります。
一回目で負けないことから
A,B,C,D,Eどれもが
大きい方の数は全て偶数,小さいの方の数は全て奇数か
大きい方の数は全て奇数,小さいの方の数は全て偶数か
のどちらかです。
ただし1より小さいものはない(またはTより大きいものはない)ので
小さい方は1,3,5,7,9
大きい方は2,4,6,8,T
2とのペアは1しかないので12はペア

と考えていくと12 34 56 78 9Tのペアとなります。
つまりハートよりもスペードの方が1大きいとわかります。
(c)この問題は最後の問題であり,それなりの場合分けも必要になって厳しいと思います。
最初の操作[1][2]の後Dが3を持つことがわかりました。
一番最初は12 34 56 78 9Tのペアですが34というペアでは4が移動するので一番最初は
D34と決まります。
すると最後はDが8を持たないといけないので一番最初は78についてはC78かB78のどちらかになりますがC78では8が最後にEまで移動してしまうのでB78と決まります。
8がBからDまで2回移動するには間のCで9以上,Dが最後まで3が残るには2がDに移動してきてはいけない
となるとCは56で決まります。
これで一番最初はB78 C56 D34となっていますが最後はEに6が移動してくることになるのでこの時偶数同士になって消える必要がありますが1は移動しないのでE9T,A12と決まります。
A12 B78 C56 D34 E9T [1][2]→
A1T B72 C58 D36 E94

それでは大問3をとりあげます。
場合分けしてイチイチ解法で足しあげて処理をしても解けるし,小問の意味を考えてうまく解く方法もあります。
うまい解法がいつでも思いつくわけでないのでイチイチ解法で素早く正確に処理できるように練習しておくのが基本的な戦略になりますが,ここではせっかくなので出題者の意図に沿ったと思われる解法を紹介したいと思います。
(問題)平成31年 開成中学校 算数 大問3
空間内または平面上にひかれた道を進んで,点Aから点Bまで移動するとき,その移動経路が何通りあるかを考えます。
(1)<<図1>>は一辺の長さが1の立方体を4個組み合わせて,横幅2,高さ2,奥行き1の直方体をつくり,その直方体と点A,Bを結ぶ道をつけたものです。図の中で点Aと点Bを結ぶ太線が,通ることのできる道です。
<<図2>>は一辺の長さが1の立方体を4個組み合わせて,横幅4,高さ1,奥行き1の直方体をつくり,その直方体と点A,Bを結ぶ道をつけたものです。<<図1>>と同じく太線で表された道を通ることができます。

これらの道を,右,上または奥のいずれかの方向に進むことで,点Aから点Bまで移動するとき,考えられる移動経路は,<<図1>>,<<図2>>のそれぞれについて何通りありますか。
kaisei_2019_m3-1.jpg
kaisei_2019_m3-2.jpg

(2)<<図3>>は一辺の長さが1の正方形を2個並べて,横1,縦2の長方形をつくり,その長方形と点A,Bを結ぶ道をつけたものです。図の中で点Aと点Bを結ぶすべての道が,通ることのできる道です。
<<図4>>は一辺の長さ1の正方形を3個並べて,横3,縦1の長方形をつくり,その長方形と点A,Bを結ぶ道をつけたもので,<<図5>>は一辺の長さが1の正方形を6個並べて,横3,縦2の長方形をつくり,その長方形と点A,Bを結ぶ線をつけたものです。それぞれ<<図3>>と同じく,点A,Bを結ぶすべての線を道として通ることできます。

次のような規則に従ってこれらの道を通り,点Aから点Bまで移動することを考えます。

規則「一回あけ左に1進み,それ以外は右または上に進む」

ただし,進む方向を変更できるものは正方形の頂点の場所だけです。点Aにもどったり,点Bからもどったりはできません。また,規則に従うかぎり,同じ道を2回以上通ることも可能です。

このとき,<<図3>>の点Aから点Bまでの移動経路は10通りあります。では,<<図4>>,<<図5>>のそれぞれについて,考えられる移動経路は何通りありますか。
kaisei_2019_m3-3.jpg
kaisei_2019_m3-4.jpg
kaisei_2019_m3-5.jpg

 

[解説]
(1)<<図1>>については平面の2×3の場合と同じなので(5×4)/(2×1)=10通りとわかります。
<<図2>>については

合計で上に1回,右に4回,奥に1回進むので上に進むことを↑,右に進むことを→,奥に進むことを↗であらわすと移動経路は
↑,→,→,→,→,↗
を並べる方法と対応させることができます

ただし↗は一番右の→と一番左の→の間に入ります。

→○→○→○→
この3つの○の場所から↗が入る場所を選んで3通り
例えば一つの並び
○→○↗○→○→○→○
に対してこの6つの○の場所から↑が入る場所を選んで6通り

よって3×6=18通り

(2),(1)がどう関係してくるのかを考えると
左に戻るという操作を上に進むと解釈します。
kaisei_2019_m3-kaisetu1.jpg

<<図4>>の図形を二つ用意して,左右に1,上下に1ずらして正方形の頂点同士を上下に結んで出来た道の移動経路と対応させることできます。
これは<<図2>>と同じなので18通りとわかります。
kaisei_2019_m3-kaisetu2.jpg
<<図5>>も同じように二つ用意してずらして道を作ると
合計で上に2回,右に4回,奥に1回なので移動経路は
↑,↑,→,→,→,→,↗
を並べる方法と対応させることができます
ただし↗は一番左の→と一番右の→の間に入ります。

→○→○→○→
の3つの場所から↗が入る場所を選んで3通り

例えば一つの並び
○→○↗○→○→○→○
に対して6つの○の場所に↑2つが入る場所は
2個が同じところに入る場合6通り
2個が別々に入る場合は(6×5)/(2×1)=15通りより合計6+15=21通りより
3×21=63通り

(注,重複組み合わせを知っていると6つの場所から重複を許して2個選方法は6H2=7C2=21と求められる)

(畠田)

PAGE TOP