数理教育研究会

栄光学園

栄光学園中学校 理科 問題解説&入試分析★2020年(R2年)

今回は栄光学園中学の理科を扱います。

【問題分析】
大問1…4つの植物の図が与えられいて、イネとススキとコムギとエノコログサという単子葉類のイネ科の植物のうちどれかを答えさせる問題です。わからないものは消去法でも選べるので植物の標準的な知識問題になっています

大問2…デンプンは炭水化物。グルテンはたんぱく質。
栄養素を答えさせる問題です。
小麦粉にはたんぱく質が含まれていることは覚えておいて良いですが、脂質やビタミンではないことはわかりそうなので、選ぶのにそんなに難しくなかったと思います。

大問3…与えられた実験データを分析して考察する問題になります。

問1 平均の長さ、計算間違いしないようにあわせたいです。

問2 面積は直径の二乗に比例します。最初に二乗の値を載せてくれていて、一応計算しやすくなっています。

問3,4 長さが長いほど折れやすい、直径が太いほど折れにくいことは何とかなくわかりますが、頑張って正確にグラフを書いて点数をとりたい。

問5 問題文が長くなってきて何を使ったらよいのかわかりにくくなっています。
大問3の最初に直径1.68mmのスパゲッティ100本82.5gで平均の長さが問2より247.5mmです。
直径1.68mmのスパゲッティ1本の重さは長さを257.6にあわせて82.5÷100×(257.6/247.5)gになるのでブカティーニの重さ2.07gをこのスパゲッティの重さで割ることになります。

問6 問3,4で書いたように直径が太くなるほど折れる力が大きくなって、長さが短いほど折れる力は大きくなります。
この考察はわかりやすいと思います。

問7 図8のグラフより直径の4乗が12の時に約132gと読み取れるので
(折れる力)=(直径の4乗)×132/12 g
=(直径の4乗)×11 g

となります。
よって直径が1mmでは折れる力は選ぶのは11g。直径が2mmでは折れる力は11×2×2×2×2=176gで選ぶのは180gになります。

問8 140mmのブカティーニは図5のグラフより折れる力は約570gです。
直径が2.78mmのスパゲッティの折れる力は2.78の4乗が約59.7なので11×59.7=656.7より約660gとなります。
同じ長さにおいてブカティーニの断面の面積と同じ面積のスパゲッティについて

面積は重さに比例にするので
ブッカティーニと同じ重さのスパゲッティを考える

とよいことになります。

ブッカティーニの重さは直径1.68mmのスパゲッティの2.4倍です。
ブッカティーニの重さと同じ重さのスパゲッティの直径の2乗は
1.68×1.68÷2.4=6.76
よって折れる力は11×6.76×6.76=502.67…より約500g

問9 ブカティーニとスパゲッティは同じ長さで断面積が同じということは同じ長さのスパゲッティと比べると、より少ない量の材料で同じ強さにすることができることがわかります。
選択肢の違いが少しわかりにくいのでしっかり論理的に選んで答えたいところです。

栄光学園の問題は実験データの分析が複雑になります。過去問で練習をしていくことで合格に近づきます!(畠田)

栄光学園中学校 算数 問題解説&入試分析★2020年(R2年)

今回は栄光学園聖中学の算数をとりあげます

【入試資料分析】

受験者数は780人で合格者数263人の実質倍率2.97倍。
合格最低点141/240、合格者平均点154.5/240

各教科の平均点は(受験者平均点/合格者平均点)の順で
国語70点満点(36.5/41.9)
算数70点満点(38.1/47.9)
理科50点満点(32.0/36.8)
社会50点満点(24.4/27.49)

ここ1,2年倍率が高めで例年程度の平均点となりました。

【問題分析】
大問1…平均の問題です。(1)は典型問題です。(2)は残った整数の和が600ということですが1つ取り除いてもそんなに大きさはかわらないので1から最後まで整数を足した和が600付近を考えればよいことになります。(3)目星をどのようにつけるかです。残った整数の平均は440/13というように分母が13なので残った整数は13の倍数個ということがわかります。そして平均値は440/13とある程度大きくなければなりません。そして1つ取り除いてもあまり平均値はかわりません。このことから,1から(13の倍数)+1個までの平均値が440/13に近いものを考えればよく
440/13=34.…の2倍は68で65=13×5より66個で考えたら良さそうだとわかります。
1つ取り除いても平均値はあまりかわらないという、そういう見方が出来ているかが問われいています。

大問2…普通の時計算と違い秒針まで考える問題です。しかし(1)(2)については時針と分針でやったことを応用すればよいので考えやすいと思います。
(3)は時針と分針が重なる度に(2)の②で求めた角度だけ秒針がずれていきます。誘導になっていたわけです。全て調べるのは大変ですが、0時から逆再生しても角度が同じことを考えると半分調べればよいことがわかります。(4)も(3)が誘導になっているであろうと思うので、秒針を戻したり、進めて時針や分針と重なる場合を考えればよくなります。時計算を応用させることと、誘導をいかに使うかです。

大問3…反射の問題なので線対称移動していけばよいです。
そして比で求めることになります。
しかし(4)については対象移動したときにどの辺が対応しているかしっかり考えないといけないので深い理解と考察が必要です。

大問4…今回はこれを扱いますす。

(問題)栄光学園中学 算数 大問4 (4) (5)
図1のような、16枚のパネルと8つのボタンA,B,C,D,E,F,G,Hがあります。最初は、すべてのパネルに「○」が表示されています。
eikou20m1.jpg

ボタンA,B,C,Dはそれぞれのボタンの下に並ぶ縦4枚のパネルに対応し、ボタンE,F,G,Hはそれぞれのボタンの右に並ぶ横4枚のパネルに対応しています。各パネルは、対応するボタンが押されるたびに、○→△→×→○→△→×→○→…と、表示されている記号が変化していきます。
例えば、最初の状態から、ボタンAを押すと図2のようになり、さらにボタンE,ボタンAの順番で押すと,図3,4のように変化します。
eikou20m2.jpg

(4)最初の状態から,ボタンA,Bは1回も押さず、ボタンCは1回,ボタンDは2回押しました。EからHのボタンはどのように押したか分からないとき、○が表示されているパネルの枚数として考えられるものをすべて答えなさい。

(5)最初の状態から何回かボタンを押したとき,〇が表示されているパネルの枚数として考えられるものをすべて答えなさい。

[解説]
(1)と(2)と(3)は解説は省略させてもらいます。

(4)
Aは0回、Bは0回、Cは1回、Dは2回を押すと
横の列のボタンを何回か押すと

○○△×の○が2個の場合
△△×○と××○△の○が1個の場合

になります。
ということは○の個数は4つ横の列の○の個数を考えて
1,1,1,1の時,4個
1,1,1,2の時,5個
1,1,2,2の時,6個
1,2,2,2の時,7個
2,2,2,2の時,8個
となります。
よって4,5,6,7,8が考えられます。

(5) (4)では
縦の列のボタンが0回、0回、1回、2回の組み合わせの時に横の列のボタンを押すと

○○△×の○が2個の場合
△△×○と××○△の○が1個の場合

となりました。
何故このような問いがあったのかを考えると、縦の列のボタンの回数の組み合わせによって横のボタンを押した時に○の増え方がかわるからです。
ということは同じように他のパターンを考えていけばよいことになります。

(2)の考察により縦の列のボタンの回数の組み合わせは
1回,1回,2回,0回なども0回,0回,1回,2回の場合と出来る○の個数は同じになります。

よって縦列のボタンの回数の数字が3個あるパターンはこれで全部です。

・縦列のボタンの回数の数字が2個の場合

●縦列のボタンの回数の同じ数字が3個と1個の場合

横の列のボタンを押すと
△△△×や×××△の0個
○△△△や○×××の1個
○○○△や○○○×の3個

になるので
0,0,0,0で0個
0,0,0,1で1個
0,0,1,1で2個
0,1,1,1で3個
1,1,1,1で4個
0,1,1,3で5個
1,1,1,3で6個
0,1,3,3で7個
1,1,3,3で8個
0,3,3,3で9個
1,3,3,3で10個
3,3,3,3で12個
の場合があります。

●縦列のボタンの回数の数字が2個と2個の場合

横列のボタンを押すと
○○△△や○○××の2個
△△××の0個
なので

0,0,0,0で0個
0,0,0,2で2個
0,0,2,2で4個
0,2,2,2で6個
2,2,2,2で8個
の場合があります。

・縦列のボタンの回数の数字が全部同じ場合

横列のボタンを押すと
○○○○の4個
△△△△や××××の0個
なので

0,0,0,0で0個
0,0,0,4で4個
0,0,4,4で8個
0,4,4,4で12個
4,4,4,4で16個
の場合があります。

(4)と以上より
0,1,2,3,4,5,6,7,8,9,10,12,16
とわかりました。

栄光学園ではかなり深い問題が出題されます。僕は大問4は数学検定でも類題を見たことあります。
深い問題ですがその分、その場で考えてわかってもらうために誘導をしっかりつけることが多いので、前の問は何が言いたかったのか考える練習をしていくことで合格に近づきます!(畠田)

PAGE TOP