数理教育研究会

武蔵

武蔵中学校 理科 問題解説&入試分析★2020年(R2年)

今回は武蔵中学の理科を扱います

【問題分析】
大問1…仲間はずれを見つける問題ですがしっかり勉強していれば習ったことでわかるようにだいたい作られています。普段からテキストの注釈とかまで読んだりしておきたいところです。

大問2…問1は気象,問2は大地の変化の問題ですが、問3以降は生物の問題です。基本的な知識と理解が必要で、その上にその場で考えて解く問題です。細かい知識よりも、基本的なことをしっかりと理解しておく勉強が必要です。

大問3…今回はこれを扱います。

(問題)R2 武蔵中学 大問3
袋の中に、リング状の磁石が2つ入っています。2つの磁石は、引き離しやすくするために意図で結んであり、どちらもN極に黒いシールが貼ってあります。2つの磁石をつけたり離したりしてみると、つき方が何種類かあることに気づくでしょう。すべての種類について、下の表にN極とS極の区別ができる図をかいて説明しなさい。
ただし、磁石がついてるときに、全体を裏返したり回したりすると同じつき方になるものは1種類と考えます。


[解説]おみやげ問題ということで、実際には試験会場で磁石が配られるのでみんな正解したとは思います。
ここでは解説を書いておくと
磁石はどういうものかというと、物質は原子で出来ています。
そしてその原子には原子核があり,その周りを電子が回っています。

電子が回ると回転面に対して垂直に磁力線が発生します。
どの原子も電子の回転面が平行にそろっていれば、磁力線の方向がそろって物質全体として磁力線が発生している磁石となります。

よって磁石はどの原子においてもS極からN極に向かって磁力線が発生しているので、そういう風にリングの磁石を描くと
musasi_2020_rika_kaisetu_m3-1.jpg

こうなります。

するとリングの穴のところと外側は磁力線の向きが逆になるので直径を通る断面で考えると
musasi_2020_rika_kaisetu_m3-7.jpg

図のようになるので、磁石は磁力線の向きが一致するようにくっつくので次の5通りになります。

○一つのリングとN極の面ともう一つのリングのS極の面がぴったりくっつく。
musasi_2020_rika_kaisetu_m3-3.jpg

○一つのリングをN極の面を上に、もう一つのリングをS極の面を上にして上のリングの中央に下のリングの端がくるようにくっつく中央
musasi_2020_rika_kaisetu_m3-4.jpg

○一つのリングをS極の面を上に、もう一つのリングをN極の面を上にして上のリングの中央に下のリングの端がくるようにくっつく中央
musasi_2020_rika_kaisetu_m3-5.jpg

○一つのリングのN極の面の端と,もう一つのリングのS極の面の端が幅がぴったりあうようにくっつく
musasi_2020_rika_kaisetu_m3-8.jpg

○一つのリングのN極の面を上に、もう一つのリングのN極を下にして側面がくっつく。
musasi_2020_rika_kaisetu_m3-9.jpg

実際には試験会場で色々やって答えにはたどりつくと思います。
後は論点をおさえた記述がポイントです。
がんばってください(畠田)

武蔵中学校 算数 問題解説&入試分析★2020年(R2年)

今回は武蔵中学の算数を扱います

【入試資料分析】
受験者数580 合格者数188で実質倍率3.1
倍率は例年通りです。

教科別の平均点は(満点 合格者平均点 受験者平均点)の順に
国語(100 67.8 61.6)
算数(100 71.9 54.5)
社会(60 28.1 24.1)
理科(60 37.0 32.7)
合計(320 204.6 172.9)
合格最低点187/320

算数の平均点が去年の反動なのか、最近ではもっとも高くなりました。

【問題分析】
大問1…(1)2をかけていって一の桁の数が周期的になるよくある問題です。(2)どれだけ安くなったのかの値を出せば後はつるかめ算です。
どちらも基礎的な典型問題なので満点を狙いましょう。

大問2…(1)三角形と台形の面積の比を考えましょう。(2)AEを延長してチョウチョ型の比を使ったり三角形の面積の比など使って解きましょう。
この大問も基礎的な典型問題なので満点を狙いましょう。

大問3…(1)武蔵は理由を記述で問われることあります。簡単なことを聞かれてるので、しっかり論点を抑えて書きましょう。「偶数の玉が存在している」ので「少なくともどちらか一方に必ず入り」,「5と偶数の玉があれば積は10の倍数」となり0となる。この三つのことについて書かれていればよいと思います。(2)0でなければ偶数と5は同じ箱に入ってはいけなくなります。しかも偶数が4つもあるので、場合分けがそんなに発生しません。(3)こちらも0でない場合ばかりなので場合分けが少なくて、初見の問題で実験してやるタイプの問題と言ってもやりやすかったと思います。
満点をとりたい。

大問4…今回はこれを扱います。


(問題)R2 武蔵中学 大問4
選挙では,各候補者の得票数に小数点以下の数がついてる場合があります。この仕組みを例1を用いて説明します。①~④の4人の候補者について,投票用紙に姓名とも書かれている票の数を正規の得票数と言います。投票用紙に「田中」とだけ書かれていると①と③のどちらに投票したか不明です。また,「ともこ」とだけ書かれていると②,③,④の誰に投票したか不明です。そこで,「田中」だけの票が3票あったので,これを①と③の正規の得票数の比に分けて分配し,正規の得票数に足します。この操作を「按分」と言います。ただし,按分する票数は小数第2位を切り捨てます。①については,3×5/(5+6)=1.36…なので,1.3票を足して,按分後の得票数は6.3票になります。③についても,同様に計算して,「田中」の分で1.6票を足しますが,③は「ともこ」だけの3票についても按分しないといけません。つまり,3×6/(7+6+8)=0.85…なので,さらに0.8票を足して,按分後の得票数は8.4票となります。次の問に答えなさい。
musasi20m1.jpg
musasi20m2.jpg
(1)例1について,(ア)に入る数を求めなさい

(2)例2について,(イ)に入る数を求めなさい

(3)例2について,(ウ),(エ)に入る数をそれぞれ求めなさい。

[解説]
(1)簡単に答えます。
3×8/(7+6+8)=1.14…なので8+1.1=9.1

(2)この問題のポイントは按分すると小数点第2位を切り捨てられるところです。

例2の②は按分が1.5,④は1.2なので③はともこによる按分は全部で5票ぐらいなので5-1.5-1.2=2.3ということで
②は20票で按分1.5ということは③は2.3でいくらか?と勘でやっても求まるとは思います。

ここでは小数点第2位を切り捨てられたことによって,範囲を絞って答えになっているものを求めたいと思います。

②から按分する票数の小数点第2位を切り捨てる前の値は1.5以上1.6未満であります。
よって5×20/(20+(イ)+17)の値が1.5以上1.6未満より

(イ)は
5×20÷1.5-37=29+2/3以下
5×20÷1.6-37=25+1/2より大

なので(イ)=26,27,28,29のどれかに絞れました。

同様に④でもやってみると
5×17÷1.2-37=33+1/6以下
5×17÷1.3-37=28+5/13より大

なので(イ)=29,30,31,32

よって(イ)=29と決まります。

(3)同じように範囲を絞って①と③の田中の按分において①は1.6なので

(エ)×21/(21+29)の値が1.6以上,1.7未満より
(エ)の範囲を絞ると

1.6×(21+29)/21=3+17/21以上
1.7×(21+20)/21=4+1/21未満
なので(エ)=4と決まります。

したがって(ウ)は
ともこの按分…5×29/(20+29+17)=2.19… なので2.1
田中の按分…4×29/(21+29)=2.32より2.3

だから29+2.1+2.3=33.4
とわかりました。

他の大問が簡単ですぐに解けると思うので,この問題に時間は使えます。範囲を出すと大変なのではないかと、ためらっている時間があれば計算するように練習しておきましょう!(畠田)

武蔵中学校 算数 問題解説&入試分析★2019年(H31年)

今回は武蔵中学校を扱いと思います

【入試資料分析】

倍率は例年通りです。

受験者数569 合格者数186で実質倍率3.1

算数は今年は受験者平均が近年ではもっとも低くなりました

教科別の平均点は(満点 合格者平均点 受験者平均点)の順に
国語(100 74.1 65.6)
算数(100 55.2 39.4)
社会(60 38.2 33.4)
理科(60 37.7 32.2)
合計(320 205.2 170.5)
合格最低点185/320

【問題分析】
○大問1
よくあるような約数の問題ですが,程度が高い発展問題まで勉強しておく必要があります。
(1)素数を書いていって
2,3,5,7,11,13,17,19,23,29,31
なので31は小さい方から11番目
2+3+5+7+11+13+17+19+23+29+31=160
160=2×2×2×2×2×5
より2の使い方は0,1,2,3,4,5個の6通り,5の使い方は0,1個の2通り
よって6×2=12個
あまり算数では使わない計算の仕方なので全部約数を書いてもオッケーです。
(逆数の和)=(約数の総和)÷(元の整数)です。
約数の総和は(1+2+4+8+16+32)×(1+5)=378
なので378÷160=189/80
約数の総和はこれもあまり算数では使わない計算の仕方なのでごり押しで全部足してもいいです。

(2)1×2×3×…×2019は下から0がいくつ続きますか?という問題は5で何回割り切れるかということになりましたが、それと同じ解法の問題です。
10000÷31=322あまり18
322÷31=10あまり12
で322+10=333回

○大問2
簡単な相似の問題なので満点をとりましょう。
(1)
musasi_2019_m2_kaisetu.jpg
緑の直角三角形が相似になります。
よって図のように長さが⑤,⑦とおけて⑤+⑦=8よりCF=⑤=10/3cmとわかります。
(2)三角形GFCの面積が10cm²よりGC=10×2÷CF=6cm
よってAB=6×(2+5)/5=42/5cm
(3)BF=6+8-10/3=32/3
8:32/3=3:4より
高さはAB×4/(3+4)=24/5
よって面積は32/3×24/5÷2=25.6cm²

○大問3
点の移動の問題です。
処理の仕方を練習していたら、簡単な問題かもしれませんが武蔵ではそんなに出ている印象はありません。
練習不足になっていれば時間がかかったりミスが多くなるかもしれません。

この問題の処理の仕方のポイントは図のように頂点に到達した時の時間を書いていくことです。
musasi_2019_m3_kaisetu.jpg
(1)25秒までは点QはCからDに向かうので
5から10秒の間で平行四辺形になるのは15-[3]=[2]から[1]=3秒より5+3=8秒後
10秒から20秒の間で平行四辺形にあるのは[3]-15=[2]から[1]=15で5+15=20秒後
(2)8秒後では底辺の長さは2×3=6cm,18秒後での底辺の長さは2×15=30cm
よって75×30/6=275cm²
(3)最小になるのは点PまたQが頂点にきたときで40秒ごとに繰り返すので10秒から50秒まで調べます。
10,20,25,30,40,45秒後を調べると10秒が一番小さいので50秒も一番小さくなり
底辺の長さが5×2=10なので75×(10+0)/(6+6)=62.5cm²

大問4をとりあげたいと思います。
武蔵定番の第4問の場合の数の問題です。
整理や処理の仕方,どこまで手をつけるべきか難易度の見極めなど勉強になります。
(3)(ア)ぐらいまではとりたいところです。

(問題)H31年 武蔵中学校 算数 大問4
<図1>のように,たて3cm,横6cmの長方形があります。これを1cmごとに区切ってできる18個のます目に,次の[ルール]で色をぬります。
[ルール]
・それぞれの列について,3つのます目のうち少なくとも1つはぬる。
・色をぬったます目の真下のます目はすべてぬる。
例えば、<図2>の場合,ぬった部分の面積は13cm2,まわりの長さは20cmとなります。次の問に答えなさい。
musasi_2019_mondai4.jpg
(1)面積が17cm²となったとき,まわりの長さとして考えられる長さをすべて求めなさい。
(2)面積が15cm²となったとき,
(ア)まわりの長さとして考えられる長さをすべて求めなさい。

(イ)まわりの長さが最も長くなるようなぬり方は何通りありますか。

(3)まわりの長さが最も長くなったとき,
(ア)面積が最も大きくなる場合と最も小さくなる場合の例を1つずつ,右のます目にぬりなさい。
(イ)ます目のぬり方は(ア)の2通りもふくめて,全部で何通りありますか。

(1)6×3-17=1より1つだけます目を塗らない状態です。
musashi4-1-1.jpg
塗らないます目があるのが1または6列目の場合,18cm
musahi-4-1-2.jpg
塗らないます目があるのが2または3または4または5列目の場合,20cm

(2)
(ア)塗らないます目は6×3-15=3より3ますです。
musasi_2019_m4-2_kaisetu.jpg
まわりの長さが一番小さいのは3×2+6×2=18

長方形に縦の辺が新たに出来ると2cmずつ長くなります。
よって18,20,22,24cmです。

(イ)両端以外に縦の辺を6つできるようにすればよい。
1ます塗らない列と,2ます塗らない列が両端以外かつ隣り合わなければよい。
(1ます塗らない列,2ます塗らない列)=(2,4),(2,5),(3,5),(4,2),(5,2),(5,3)の6通り

(3)縦の辺が出来るだけ多くなればよく、全部で縦が14辺できる。
(ア)
musashi_2019_m4-3-1.jpg
面積がもっとも大きくなるのは2つの隣り合わず両端でない列を2ます塗らなければよいので例えば2列目と4列目を2ます塗らなければよい。

musashi_2019_m4-3-2.jpg
もっとも小さくなるのは3ます塗られていない列が3つ隣り合わせないように並び,残りは1ますの列になればよいので例えば
1列目,3列目,5列目は1ますで残りの列は3ます塗ればよい。

(イ)最も大きくなる場合は4ます塗らない
最も小さくなる場合は6ます塗らない
よって4ます塗らない,5ます塗らない、6ます塗らない場合が考えられる。

○4ます塗らない場合
2ます塗られていない列の組み合わせは
(2,4),(2,5),(3,5)の3通り

○5ます塗らない場合
musashi_2019_m4-3-3.jpg
2ます塗られていない列が2つと1ます塗られてない列の組みあわせは
(2ます塗られていない列が2組,1ます塗られていない列)=((2,4),5),((2,4),6),((2,5),3),((2,5),4),((3,5),1),((3,5),2)の6通り

○6ます塗らない場合
3ます塗られている列3つの組み合わせは
(1,3,5),(1,3,6),(1,4,6),(2,4,6)の4通り

よって全部で3+4+6=13通り(畠田)

PAGE TOP