数理教育研究会

【YouTube動画】灘・甲陽 分析 2021年度

2021年度灘・甲陽入試分析をアップしました

灘中学校 算数(2日目)2021(R3)入試分析

灘中学校の算数2日目をとりあげたいと思います。

1日目の記事に書いてるように2日目の平均点は例年程度の高めのラインでした。
しかし目新しい問題はなく過去問や難関校の類題ばかりであったことを考えると、もう少し平均点高くて良かったんじゃないかと個人的には思います。
それもコロナの影響なのかもしれないし、もしかすると問題の読み間違えが多かったこともあったのかもしれません。


【問題分析】
大問1…濃度の問題。濃度としての高度な問題というわけでもなく、何回ずつとるかという整数問題が絡んでいます。思ったよりも当たり前な答えになるので逆に戸惑ったかもしれません。

大問2…パスカルの三角形の問題。灘や難関校でやり尽くされた問題で、よく練習している子は瞬殺であったと思います。

大問3…平面図形の問題。正六角形をネタとした標準的な解法の問題で、完答しておきたい。

大問4…灘でよく出る操作の問題。過去問で練習していれば、簡単であったと思います。しかし、あまり練習していなければ、意図が分からずに最初の9つの空欄を埋めるところで玉砕したかもしれません。

大問5…立体の切断の問題。典型問題なので練習している人は瞬殺できたと思います。わかりやすく誘導もされています。今回はこの問題の(2)を扱いたいと思います。


(問題)R3 灘中学校 算数第2日 大問5
図1は、1辺の長さが6cmの立方体ABCD-EFGHです。この立方体の面EFGHは水平な地面についています。
この立方体から、図2の斜線部分の正方形を底面とし、高さが6cmの直方体をくりぬきます。次に、図3の斜線部分の正方形を底面とし、高さが1cmの直方体をくりぬきます。さらに、図4の斜線部分の正方形を底面とし、高さが1cmの直方体をくりぬきます。このようにしてできる図5の立体をPとします。

(1)立体Pの体積は[   ]cm³です。

(2)立体Pを、頂点A,C,Fを通る平面で切って2つの立体に分けたとき、頂点Bを含む方の立体をQとします。

(ア)右の図は、立方体の面EFGHから5cmの高さにある平面で立体Qを切ったときの真上から見た切り口を書き入れたものです。その平面と面AEFBの交わりを太線で表しています。立方体の面EFGHから4cm,3cm,2cmの高さにある平面で立体Qを切ったときの真上から見た切り口を、右の図にならってそれぞれかき入れなさい。

(イ)立体Qのうち,面EFGHから2cmの高さになる平面と面EFGHとではさまれた部分の立体の体積を求めなさい。

[解説]
(1)省略
(2)

(ア)で高さ4cm,3cm,2cmの切り口を書かされています。
これが誘導になっています。

同じように高さ6cm,5cm,4cm,3cm,2cm,1cm全部書いてみます。

1cm×1cm×1cmの小立方体の集合であると考えると、切り口の図は各層の小立方体が並べられていると考えることができます。

すると小立方体何個分か?という問題になります。

小立方体は何個切断されますか?と言う問題と同じように考えます。

青のラインが小立方体の上面、赤のラインが小立方体の下面です。

すると青のラインで小立方体を切断すると1/6個分が残ります。

赤のラインで小立方体を切断すると5/6分が残ります。

なので立体Qのうち面EFGHから2cmの高さになる平面と面EFGHとではさまれた部分の立体の体積は小立方体が
高さ2cmでは青のライン2個、赤のライン1個
高さ1cmでは青のライン1個
なので
1/6×3+5/6=4/3個分より
4/3cm³
とわかります。

Qの体積は小立方体が全部で
ラインが通っていないもの16個
青のライン7個
赤のライン7個
より
16+(1/6+5/6)×7=23個分より
23cm³とわかりました。


誘導も丁寧でどうやって解くのかわからないという問題はありませんでした。しかし平均点は思ったよりも高くなかったので、しっかり過去問で練習しておいてください。まずは過去問です。過去問を研究しつくしましょう(畠田)

灘中学校 算数(1日目)2021(R3)入試分析 PART2

今回は前回の灘中学校の算数1日目の問題の二問目です。

整数問題です。
問題自体の難易度は高くはありませんが、灘らしい問題ではあるのでしっかり練習しておきたい問題です。


(問題)R3 灘中学校 算数第1日 大問7
Xは3桁の整数で、どの2つの位の数も異なります。Xを7倍すると4桁の整数ABCDを作ることができ、A>B,B>C,C>D,D>0となりました。このとき、Xは[   ]です。

[解説]
整数問題のよくある処理としては
○候補を絞る。
○シラミツブシにする
です。

まずXは3桁の整数なので7倍した4桁の整数には範囲があります。
X<1000
より
7×X<7000
です。

だからAは6以下になります。
しかもA>B>C>D>0です。
Aは4以上でないとB,C,Dが存在しません。
この条件を満たす4桁の整数を全てかくと

6543
6542
6541
6532
6531
6521
6432
6431
6421
6321
5432
5431
5421
5321
4321
の15個になります。
上から順に調べて
6531÷7=933
6321÷7=903
と見つかりました。

穴埋めなので1つ見つければオッケーですね。


灘でよく出題されるテーマの問題はしっかり出ています。高い平均点での戦いになるので過去問や類題などしっかり練習しておいて合格に近づいていきましょう!(畠田)

灘中学校 算数(1日目)2021(R3)入試分析

数理教育研究会の畠田和幸です。

コロナ禍となって初の入試になります。
コロナ禍の影響なのか出願者数や難易度に変化があった学校が多くなりました。
特殊な状況の中、勉強をして受験をすることになりましたが受験勉強をやりきったことはこれからの人生で役に立つ大きな経験になると思います。

それでは最初は灘中学校の1日目です。


【入試資料分析】
今年の実質倍率は2.86です。
ここ数年ではもっとも多かった昨年でしたが今年は例年程度となりました。
(H24)2.81(H25)2.81(H26)2.97(H27)2.61
(H28)2.67(H29)2.76(H30)2.88(H31)2.70(R2)2.98(R3)2.86

次に平均点です。
昨年の算数が第1日目,2日目ともにここ数年で平均点が一番高かったところですが、今年の算数は第2日目は例年の高め程度でしたが、第1日目が大幅に平均点が高くなり算数全体としてここ数年で平均点が一番高くなりました。

(教科,受験者平均点,合格者平均点)の順に
(国語1日目,57.7点,63.2点)
(国語2日目,71.0点,78.0点)
(国語合計,128.7点,141.2点)
(算数1日目,65.1点,83.0点)
(算数2日目,54.3点,67.8点)
(算数合計,119.4点,150.8点)
(理科,68.5点,76.5点)
(総合,316.7点,368,5点)

算数第1目目は去年が易化になりましたが、更に大きく易化となりました。
解き方が不明で悩むというような問題はありませんでした。
8割以上はとりたいところです。

【問題分析】
大問1…計算問題です。2021=43×47が使われています。受ける年の西暦は普段から素因数分解しておきましょう。

大問2…水の体積を扱う基本的な比の問題。

大問3…重複組み合わせなど数学的な知識があれば有利。なくても、数え上げるのは大変ではない。

大問4…少し複雑であるが、標準的な3点の移動の問題。

大問5…灘らしい整数問題。灘を受けるなら(m×nをpで割った余り)=(mをpで割った余り×(nをpで割った余り)をpで割った余り)を練習しておこう。

大問6…よく出題されてきている約数をすべてかける約束記号。今回はこれを扱います。

大問7…灘らしい整数問題。これもPART2で扱いたいと思います。

大問8…図形の回転の問題。少しひねられているが標準的。

大問9…面積の問題。難関校でよく出題されるような平面図形の問題をやっていると解きやすい。

大問10…相似の問題。特にあまり工夫などはない。

大問11…空気と容器は体積が一定なのでどの面が下でも常に同じ相似比。あまり難しくはないが面白い。

大問12…灘恒例の展開図。過去問で慣れていると、だいたいはありきたりの立体から切り落としていったものであるとわかりやすい。


(問題)R3 灘中学校 算数第1日 大問6

2以上の整数Aに対して、Aの約数をすべてかけあわせてできる数を[A]と書きます。例えば、
[6]=1×2×3×6=36
です。
B=6のとき[2×B]/B=[① ]です。また、[2×C]/[C]=192となる2以上の整数Cは[② ]です。

[解説]
192=2×2×2×2×2×2×3
よりCは2と3の素因数のみ持つ。
C=2ⁿ×3ᵐとおくと

図より[C]は青の部分の(n+1)×(m+1)個の約数を全てかけることになります。
[2×C]は[C]と比べてm+1個の赤の部分の約数が増えています。

3は1つ、2は6つ増えればよかったので
m+1=2
(m+1)×(n+1)=6
よりm=1,n=2とわかります。

したがってC=2²×3=12


今回の第一日目はかなりの易化でかなり平均点の高い争いになりますが、灘らしい問題も出ています。しっかり過去問や難関校の頻出問題を練習して8割5分ほどとることが出来れば合格平均点いけます。(畠田)

灘中学校 算数(1日目)2019(H31)入試分析 その2

今回は灘中学、算数1日目の大問4をとりあげたいと思います。
大問4では表面上は高校数学で習う合同式を道具として使わなかったとしても根本的な考え方,解法の原理は合同式になります。
灘でもよく出題され,合同式の考え方に慣れていれば大きく有利になるのでぜひ考え方を勉強してください。

(問題)2019年度 灘中学校 算数第1日目 大問4
A=377×377×377×377×377×377とするとき,Aの約数の中で14で割ると1余るものは,1を含めて全部で[ ① ]個あります。また,Aの約数の中で15で割ると1余るものは,1を含めて全部で[ ② ]個あります。

[解説]
このような余りの問題が出たとき
(A+BをPで割った余り)=(((AをPで割った余り)+(BをPで割った余り))をPで割った余り)
(A-BをPで割った余り)=(((AをPで割った余り)-(BをPで割った余り))をPで割った余り)
(A×BをPで割った余り)=(((AをPで割った余り)×(BをPで割った余り))をPで割った余り)
を使います。
和,差,積は余りにおきかえて計算してしまったらよいわけです。


377=13×29よりAは13の素因数が6個と29の素因数が6個の積です。
14で割った余りで考えると
29は14で割ると余り1です。
13は14で割ると余り12ですがこれを1不足しているということで余り-1として扱います。
余りで掛け算を考えると
1×1=1 ←余り1になるもの同士をかけると余り1の整数になる
(-1)×(-1)=1 ←1不足しているもの同士をかけると余り1の整数になる
このルールで考えればよいことになる。

なので(余り1の整数である)29は何個使ってもよくて,
(1不足の整数である)13は偶数個使えばよいことになります。

29の使い方は0個から6個の7通り,13の使い方はは0個,2個,4個,6個の4通りより
7×4=28通り


29は15で割ると余り-1
13は15で割ると余り-2
と考えて扱います。

13の個数で場合分けすると
0個の時…1のことなので余り1
1個の時…2不足
2個の時…(-2)×(-2)=4で余り4
3個の時…4×(-2)=-8で8不足
4個の時…(-8)×(-2)=16で余り1
5個の時…1×(-2)=-2で2不足
6個の時…2個と同じで余り4
よってAの約数が余り1になるには,13が0個または4個で余り1,29が偶数個で余り1の時の1×1=1の場合しかない。
13の使い方は0個または4個の2通り,29は0,2,4,6個の4通りで
4×2=8通り

(畠田)

灘中学校 算数(2日目)2020(R2)入試分析

今回は灘中学校算数第2日目です。

【入試資料分析】
算数第2日目と1日目と同じでここ数年で一番平均点が高くなりました。
そうなると平均点55.4点に対して合格者平均71.2点と差が16点ほどあり,1日目と同じく算数は大きく差がついたと思われます。

問題も全体的にどこかの類題であることが多く、計算が簡単な問題が多かったので、きっちり練習してきた人はズバズバ解けたかもしれません。
関東の学校で出された類題も多いので、色々な学校の問題をやっておきたいところです。

【問題分析】
大問1…旅人算ですが,関東の学校で多いダイアグラムで処理する問題です。おもいっきり誘導されているので間違えずに正確に早く解きたいところです。

大問2…マイナンバーのチェックディジット、検査数字を元ネタに作られた問題ですがこれは昨年の渋谷教育学園渋谷でも出題されています。
やったことなくても難しくはありませんが、やったことあった人の方が落ち着いて対処できて有利だったと思います。

大問3…時計ではありますがN進法の応用問題で、練習してきた人も多いと思います。

大問4…輪の通過範囲の問題です。よく勉強している人は類題をやったことある状態で受けられたと思います。

大問5…(1)は断面が正六角形の切り方を考える。(2)はA,B,Gを通る平面と直線PQとの交点を面BFFCから見て考える。など渋幕でもよく見られる難易度は高めですが切断の典型パターンが使えるので練習しておきたいところです。(3)を解説したいと思います。

(問題)R2年 灘中学校 第2日 大問5
右の図は,1辺の長さが6cmの立方体ABCD-EFGHです。Pは辺ABの真ん中の点,Qは辺FGの真ん中の点,Rは辺GHの真ん中の点です。この立方体を3点P,Q,Rを通る平面で切ったとき,この平面は辺ADの真ん中の点Sを通ります。
20nada2m1.jpg
(1)四角すいC-PQRSの体積を求めなさい。

(2)3点A,B,Gを通る平面で四角すいC-PQRSを2つの立体に分けたとき,点Qを含む方の立体の体積を求めなさい。
20nada2m2.jpg

(3)3点B,D,Fを通る平面で四角すいC-PQRSを2つの立体に分けたとき,その切り口の面積は,四角形BFHDの面積[   ]倍で,点Qを含む方の立体の体積は[   ]cm^3です。
20nada2m3.jpg

[解説]
(3)
2020灘2日目 1
切り口の面積が四角形BFHDの何倍かを求めさせられます。

ということは,この四角形BFHDがある平面上にある面を底面と考えて,Cを頂点とするすい体を考えてみます。
四角すいC-JKLIと,四角すいC-BFHDは高さが共通になり,底面積の比から体積が求めることができます。
このことを使うとやりやすいのではないかと予想ができます。

それではまず点Jと点Iは線分BDのどの位置になっているかを調べましょう。

2020灘2日目 2
図2のように面ABCDを考えます。

するとJB:JD=BP:DC=1:2。同様にBI:DI=2:1なのでBJ:JI:ID=1:1:1とわかります。

次に点Kと点Lは線分PQ,線分SRのどの位置になっているかを調べてみようと思います。
2020灘2日目 3
図3のように真上から見たら図を考えます。
するとそれぞれの中点になっています。

更に線分KLは線分BDの半分の長さであることもわかります。

2020灘2日目 4
これらのことから図4のように比をおけて
台形÷四角形BFHD={(4+6)×1÷2}÷(2×12)=5/24倍
と計算できます。

体積は四角すいC-JKLIを考えると残りの部分の四角すいC-KQRLは四角すいC-PQRSの体積54cm^3の半分なので四角すいC-JKLIと四角すいC-KQRLに分けて考えると良さそうです。

四角すいC-JKLIの体積は,まず四角すいC-BFHDの体積を求めて5/24倍します。

(四角すいC-BFHD)=(三角柱BCD-GHF)-(三角すいC-FGH)
=(立方体ABCD-EFGH)÷2-(三角すいC-FGH)
=6×6×6÷2-6×6÷2×6÷3=72

よって求める面積は
72×5/24+54÷2=42cm^3
とわかりました。

この問題はすい体の体積を底面積の比を使ったり,平面に落として考えたりなど切断のパターンの練習になります。
渋幕など類題も多いのでしっかり解いて考察しておけば努力が反映さて、合格に近づきます。
がんばってください(畠田)

灘中学校 算数(1日目)2020(R2)入試分析

数理教育研究会の畠田和幸です。

令和になって初の入試になります。
今年も解説をすることになりました。
よろしくお願いします。

最初は灘中学校の1日目です。

【入試資料分析】
今年の実質倍率は2.98です。
ここ数年ではもっとも多くなりました。
(H24)2.81(H25)2.81(H26)2.97(H27)2.61
(H28)2.67(H29)2.76(H30)2.88(H31)2.70(R2)2.98

次に平均点です。
昨年の算数が第1日目,2日目ともにここ数年で平均点が一番低かったのですが、今年の算数は第1日目,2日目ともにここ数年で平均点が一番高くなりました。
受験者平均点と合格者平均点の差も一番大きくなり、算数で差がつきやすかったようです。

(教科,受験者平均点,合格者平均点)の順に
(国語1日目,54.3点,58.1点)
(国語2日目,75.2点,79.9点)
(国語合計,129.5点,138.0点)
(算数1日目,55.4点,72.0点)
(算数2日目,55.4点,71.2点)
(算数合計,110.8点,143.2点)
(理科,57.3点,66.7点)
(総合,297.6点,347,9点)

算数は去年と比べて典型的な問題が多く、計算もそんなに複雑ではなくかなり簡単になったという印象です。
しかしそれほど点数は高くないので、焦りやミスなど実際に点数をとるのは難しかったと思われます。
マニアックな問題の知識よりも、普通の問題を早く正確に解ける誤魔化しのきかない高い実力を求められています。

【問題分析】
大問1…簡単な計算問題です。

大問2…消費税が8%から10%になったことをネタにした基本的な範囲の問題です。

大問3…時間が同じときは速さと距離は比例するという速さのよくある問題です。

大問4…カレンダーの問題です。4週ある曜日と5週ある曜日に注目します。

大問5…2018年度の大問3をやっていれば,単にそのまま並べればいいわけではなく2桁になった場合は法則性が変わってくる
ことに気づいたかもしれません。

大問6…時計算の問題です。1分に何度回転するか考えます。

大問7…典型的な比で長さを求める問題です。

大問8…直角三角形の相似などを使っていく、よくある問題を少しし複雑にした問題です。

大問9…この問題を扱いと思います。

大問10…回転体の問題です。相似な直角三角形などで長さを求めて回転させる、よくある問題です。

大問11…灘恒例の展開図ですが、元の立体を描いてとらえることはそう難しいわけではありません。

(問題)R2 灘中学校 算数第1日 大問9
nada2011m.jpg
右の図において,AB,CEの長さはどちらも8cmで,印○をつけた角の大きさは等しいです。このとき,四角形ACDEの面積は三角形ABCの面積の[   ]倍です

[解説]
R2nada9.jpg
△ABCは8cmと5cmとその間の角度が○
△CEAは8cmと9cmとその間の角度が○

なので面積の比は△ABC:△CEA=5:9とわかります。

△ABC≡△CEFとなるように辺EA上にEF=5cmとなる点をとるとCA=CFとなる。

すると△CFAは二等辺三角形となり点Cから辺AFに垂線CHをおろすと
FH=AH=4÷2=2cm
となる。

EH=5+2=7cmなので直角三角形CDEと直角三角形EHCは斜辺と他の1辺が等しいので合同となる。
△ABC=[5],△ACE=[9]とおくと△CEF=([9]-[5])÷2=[2]
よって△CDE=△EHC=[5]+[2]=[7]
したがって四角形ACDE=[7]+[5]+[4]=[16]

よって四角形ACDEは△ABCの[16]÷[5]=16/5倍

この問題は合同な三角形を描いてみたり、二等辺三角形を作ったりなど難問を解くときに使う方法の問題です。
おそらく∠DEAが90°には見えないようにわざと描かれていて、こういう場合の練習にもなります。
色々なパターンを経験して練習していくことで解ける確率があがっていくので頑張ってください!(畠田)

灘中学校 算数(2日目)2019(H31)入試分析 その1

灘中学校、算数2日目をとりあげます。

【入試資料分析】
今年の算数2日目の特徴は1日目と同じで平均点がここ10年でも一番低いことです。
受験者平均,合格者平均の差はそんなに大きいわけでもありませんでした。
そして大問の数が4から5に増えました。

受験者平均
(H24)71.4,(H25)54.9,(H26)49.7,(H27)52.7,(H28)50.8,(H29)48.4,(H30)54.8,(H31)44.5
合格者平均
(H24)86.2,(H25)70.3,(H26)63.9,(H27)64.6,(H28)61.2,(H29)62.4,(U30)69.2,(H31)56.8

ただし問題の内容としては去年にかなり近く,近年の試験を中心に傾向を分析し対策をすればそれだけ成果が出やすかったと思います。目標は6割。
今年も高校数学の考え方が背景にある問題がほとんどです。
大問1は合同式(mod)
大問2は群数列
大問3は空間図形
大問4は数と式,整数問題
大問5は積分の体積の問題で使う断面を考えて体積を求める
これは高校数学を勉強すればよいという極端な話ではなく,過去問などの算数の問題を通してどのような数学的背景があるか考察,研究しましょう。
そのためには何度か解いてみたり,類題や他の難関校の問題などもたくさん練習するなど対策の仕方はシンプルです。
努力が合格点につながっていきます!

【問題分析】
○大問1
4桁の整数Aは百の位の数字が0です。Aの十の位の数字と一の位の数字を入れ替えて4桁の整数Bを作ります。4018と4081のようにAもBも7の倍数となるようなAは全部で何個ありますか。次のヒントを参考にして答えなさい。ただし,4018と4081の2個も含め,AとBが等しい倍も含めます。
ヒント
4081-4018=63=9×(8-1)
4082-4028=54=9×(8-2)
1000=7×143-1

[解説]
前回の灘1日目の大問4でも解説したように高校数学で並ぶ合同式の考え方を勉強していると安定して解けます。
もはやヒントが合同式の考え方に誘導しています。

合同式は
NとN’をそれぞれPで割った余りが等しいということを
N-N’=(Pの倍数)
で扱ってこれを
N≡N’ (mod P)とあらわします。

これを考えることにより何が便利になるのかというと
N+M≡(NをPで割った余り)+(MをPで割った余り)
N-M≡(NをPで割った余り)-(MをPで割った余り)
N×M≡(NをPで割った余り)×(MをPで割った余り)
のように足し算,引き算,掛け算をしたものの余りを考えるときは,それぞれの整数の余りで足し算,引き算,掛け算をして考えればいいところです。

まず
4081-4018=63=9×(8-1)
4082-4028=54=9×(8-2)
の使い方はAとBは7で割った余りが等しくないといけません。
このことをA-B=(7の倍数)で扱います。

AとBが7で割り切れなければならないのを,まずはAとBを7で割った余りが等しい,つまりA-Bが7の倍数って考え方に至るには合同式の考え方を練習したかどうかが大きく差が出てしまいます。

ヒントから(AとBの差)=9×(下2桁の二つの数の差4)なので,AとBが7で割った余りが等しくなるには下2桁の二つの数の差が0も含めて7の倍数であればよくなり

00,11,22,33,44,55,66,77,88,99,07,18,29
の場合しかないことがわかります。

次に4桁の整数が7の倍数でないといけませんがヒントの
1000=7×143-1
は1000は7で割ると1不足する(余り6になる)数として扱います。
なので千の位をNとすると
N×1000は1×N=N不足する数として扱えばよくなります。

すると4桁の整数
1000×N+(下2桁)

(7で割るとN不足)+(下2桁を7で割った余り)
として扱えばよく,これが7で割り切れるようになればよくなります。

つまり
(Nを7で割った余り)=(下2桁を7で割った余り)
となればよくなります。

下2桁は7で割ると
余り0は00,07,70,77の4つ
余り1は22,99,29,92の4つ
余り2は44の1つ
余り3は66の1つ
余り4は11,88,18,81の4つ
余り5は33の1つ
余り6は55の1つ

千の位Nを7で割ると
余り1は1,8の2つ
余り2は2,9の2つ
残りは全部1つです。

4桁の整数の個数は
4×1+4×2+1×2+1×1+4×1+1×1+1×1=21個
とわかりました。

○大問2
1から52までの数が書かれたカードが,左から数が小さい順に次のように並んでいます。
[1] [2] [3] [4] … [51] [41]
これらのカードを次の手順で並べ替えます。

2の倍数が書かれたカードが左にあるものから順にすべて取り出し,取り出した順に左から並べます。その並びの右側に,取り出していないカードを順番を変えずにすべて並べます。このとき次の(A)のような並びになりました。
(A)[2] [4] [6] … [52] [1] [3] [5] … [51]

(A)の状態のカードについて,3の倍数が書かれたカードを左にあるものから順にすべて取り出して同様の手順で並び替えました。そのときの状態を(B)とします。
(B)の状態のカードについて

(1)左から1番目,2番目,3番目にあるカードに書かれた数を答えなさい。

(2)[1]は左から何番目にありますか。

(B)の状態のカードについて,4の倍数が書かれたカードを左にあるものから順にすべて取り出して同様の手順で並べ替え,次に5の倍数が書かれたカードを左にあるものから順にすべて取り出して同様の手順で並び替え,さらに6の倍数が書かれたカードを左にあるものから順にすべて取り出して同様の手順で並び替え,最後に7の倍数が書かれたカードを左にあるものから順にすべて取り出して同様の手順で並び替えました。

(3)左から1番目,2番目,3番目にあるカードに書かれた数を答えなさい。

(4)[31]は左から何番目にありますか。

(5)左から31番目にあるカードに書かれた数を答えなさい。

[解説]
群数列のような問題です。
グループ(群)にわけて考えて
1、まずどのグループに入るか
2、そのグループの中で何番目か
が基本的な方針になります。

(1)まずは具体的にやってみましょう
1,2,3,4,…,52
2の倍数を取り出すと
(A)2,4,6,…,52,1,3,5,…,51
3の倍数を取り出すと
(B)6,12,18,…,3,9,15,…,2,4,8,…,1,5,7,…
となります。

(2)
(B)は
[3の倍数または2の倍数][3の倍数でないかつ2の倍数でない]
とグループ分けできる順番になっていて1は[3の倍数でないかつ2の倍数でない]のグループの一番左です。
[3の倍数または2の倍数]のグループの個数を考えて
52÷6=8余り4,52÷3=17余り1,52÷2=26より
17+26-8=35個
よって35+1=36番目です。

(3)
グループに分類して,どのグループに入っていて,その中で何番目か細かく見ます。

一番左に並ぶものは[7の倍数]のグループなので
7,14,21,28,35,42,49
が並んでいます。
このうち6の倍数の42が一番左にあることになります。
その次に5の倍数の35,その次に4の倍数の28の順番に並んでいることになります。

(4)31は素数なので一番右の
[7,6,5,4,3,2の倍数でない]のグループのところに入ります。
このグループに入る数を書き下すと素因数が7より大きい素数だけで出来た数(11×11=121の時点で52をこえるので結局11以上の素数)と1になります。
1,11,13,17,19,23,29,31,37,41,43,47
この順番のまま並ぶことになるので31は右から5番目
つまり左から52-5+1=48番目とわかります。

(5)左から31番目と言うことは右から52-31+1=22番目です。
右から数えた方が早いかもしれません。
一番右のグループ
[7,6,5,4,3,2の倍数でない]は(4)より12個
それより一つ左にあるグループ
[2の倍数かつ7,6,5,4,3の倍数でない]は
2×1,2×11,2×13,2×17,2×19,2×23の6個
この時点で12+6=18個です。
もう一つ左にあるグループ
[3の倍数かつ7,6,5,4の倍数でない]は
3×1,3×3,3×9,3×11,3×13,3×17
の6個で順番もこのままです。
だからこの二義から22-18=4番目の3×9=27となります。

一応最後の状態を書くと
42,35,28,21,14,7,49 | 30,12,24,36,48,6,18 | 20,40,15,45,10,50,5,25 | 4,8,16,32,44,52 | 3,9,27,33,39,51 | 2,22,26,34,38,46 | 1,11,13,17,19,23,29,31,37,41,43,47
となります。
ただ,この問題の場合は細かく全て順番を知ることでなく,まず大きくグループ分けするという大局的な見方を練習しているか問われてると思います。(畠田)

灘中学校 算数(2日目)2019(H31)入試分析 その3

前回の続きで灘中学校、2019年度算数2日目大問4,大問5をとりあげます。

大問4は高校数学の整数問題で普通に解ける問題ですが誘導に載って解いたとしても,基本的な考え方は素因数分解で,素因数分解の勉強になります。
大問5は立体をとらえるときに,高校数学では積分で体積を求めるときに断面を考えてますが,この問題も断面を考えることによって立体をとらえる問題です。類題がこれまで他の学校でも出題されてきましたが,断面の誘導が強く出ていて,断面で立体をとらえる勉強になります。

○大問4
どの辺の長さも,3cmのように整数に単位cmをつけて表される長方形を「整長方形」ということにします。ただし,正方形は整長方形に含めないことにします。

(1)整長方形の周の長さがa cm,面積がa cm^2であるとき,aにあてはまる整数は次の説明文のようにして求めることができます。空欄①,②,③に入る適当な数を答えなさい。
ただし,同じ番号の空欄には同じ数が入ります。

説明文
H31nada2-4-m1_20190219155601d69.jpg

右の図のように,整長方形ABCDがあり,周の長さはa cm,面積はa cm^2であるとします。
辺AB上に点P,辺BC上に点Q,辺CD上に点R,辺DA上に点Sを,直線PRと直線BCが平行で,直線SQと直線DCが平行になるようにとります。
BPの長さとSDの長さがどちらも[ ① ]cmであるとき,整長方形PBCRの面積と整長方形SQCDの面積の和はa cm^2になります。このとき,直線PRと直線SQが交わる点をTとすると,整長方形APTSの面積は[ ② ]cm^2になります。
このことから,整長方形APTSの直角をはさむ2辺の長さとして考えられるのは1cmと[ ② ]cmとなるため,aにあてはまる整数は[ ③ ]です。

(2)整長方形の周の長さがa cm,面積が(a×2)cm^2であるとき,aにあてはまる整数をすべて求めなさい。

(3)整長方形の周の長さがa cm,面積が(a×2+8)cm^2であるとき,aにあてはまる整数をすべて求めなさい。

[解説]
これは誘導に乗らなくても2辺の長さをx,y(x>y)とすれば
(1)はa=2×x+2×yで2×x+2×y=x×yという不定方式をとけばよくなります。
甲陽などでもx,yを自然数として2数の和と積が等しいx,yを求めろ(x+y=xyを解け)と言う問題がありましたが,同じように解けば
((xが2個分)+(yが2個分))は(xが4個分)より小さい
x×yを(xがy個分)と考えると,xは4個未満(3個以下)にならないといけなかったのでy=1,2,3のみ調べればよくなり(x,y)=(6,3)と解けました。
もっと数学の知識を使って式変形をすると
(x-2)×(y-2)=4
とやって4の約数の組みあわせを考えて
(x-2,y-2)=(4,1)より(x,y)=(6,3)とすぐに出ます。
(2)は4×x+4×y=x×yを解けばよく(x-4)×(y-4)=16と変形して(x-4,y-4)=(16,1),(8,2)より(x,y)=(20,5),(12,6)
(3)も4×x+4×y+8=x×yを解けばよく(x-4)×(y-4)=24と変形して(x-4,y-4)=(24,1),(12,2),(8,3),(6,4)と求めていけます。

誘導の意図をつかむ時間よりも安定して解けるので,このようにまず泥臭く勉強して解いて点数の最低値を底上げすることも合格するのに大切だと思います。

今回は問題の意図に沿って誘導に乗って解く方法を解説したいと思います。
(1)PBとSCの長さが等しいので長方形PBCRと長方形SQCDを並べて図のように長い長方形することが出来てこの面積がa cm^2になります。
H31nada2-4-kaisetu1 (1)
この長い長方形は底辺の長さが周の半分でa÷2 cmで,高さを☐ cmとすると
(a÷2)×☐=a
なので☐=2とわかります。
正方形TQCRは2×2=4なので
(長方形ABCD)=(長方形APTS)+(長方形PBCR)+(長方形SQCD)-(正方形TQCR)
より
a=(長方形APTS)+a-4
なので長方形APTSの面積は4cm^2とわかります。
よって1×4の組み合わせしかないのでa=((1+2)+(4+2))×2=18とわかりました。

(2)同じように
(a÷2)×☐=2×aから☐=4で長方形APTSの面積は4×4=16
16=1×16,2×8より
aは((1+4)+(16+4))×2=50と((2+4)+(8+4))×2=36

(3)同じように
(a÷2)×☐=2×aから☐=4で長方形APTSの面積は4×4+8=24になればよいので
24=1×24,2×12,3×8,4×6よりaは
((1+4)+(24+4))×2=66,((2+4)+(12+4))×2=44,((3+4)+(8+4))×2=38,((4+4)+(6+4))×2=36
とわかりました。

○大問5
一辺の長さ4cmで中身がつまった2つの立方体A,Bがあります。立方体Cは一辺の長さが12cmで,はじめ,図のように立方体Aの上面は立方体Cの上面の㋐に,立方体Bの上面は立方体Cの上面の㋒に重なっています。立方体Aは回転することなく一定方向に進み,下面が立方体Cの下面の㋑に到着しました。そののち,立方体Bは回転することなく一定方向に進み,下面が立方体Cの下面の㋓に到着しました。このとき,立方体Aが通過した部分をX,立方体Bが通過した部分をYとして,XとYが重なった部分をZとします。
H31nada2-5-m1.jpg

(1)右の図は,立方体Cの下面から9cmの高さにある平面でZを切ったときの真上から見た切り口をかき入れたものです。その平面と面PQRSの交わりを太線で表しています。立方体Cの下面から8cm,7cm,6cmの高さにある平面でZを切ったときの真上から見た切り口を,右の図にならってそれぞれかき入れなさい。
H31nada2-5-m2.jpg

解答欄
H31nada2-5-m3.jpg

(2)Zのうち,立方体Cの下面から8cmの高さにある平面と10cmの高さにある平面ではさまれた部分の体積を求めなさい。

(3)Zのうち,立方体Cの下面から6cmの高さになる平面と8cmの高さにある平面ではさまれた部分の体積を求めなさい。

 

[解説]
類題が難関校でよく出ている問題です。
灘で出やすい分野、お題です。
XとYの共通部分の立体を考えて断面を調べるのではなく,XとYそれぞれの断面を考えてその共通部分を調べる
上面と下面の通過部分を考える
しっかり練習しておけばアプローチに迷うことはなかったと思います。

(1)XとYを別々に断面を考えてから共通部分をとります。
H31nada2-5-kaisetu3.jpg
H31nada2-5-kaisetu4.jpg
H31nada2-5-kaisetu5.jpg

断面において動かす立方体の上面が通ったところ,下面が通ったところを描いて対応する頂点を結べば断面ができます。
青がXの断面,赤がYの断面です。
青と赤の共通部分が求める断面になります。

(2)共通部分をイメージするのではなく断面を元に共通部分の立体をとらえます。
高さ8cm,9cmの断面はかいているので10cmの断面を考えてみると
H31nada2-5-kaisetu6.jpg
高さ10cmは立方体A,Bの最初の位置の下面より上なので,下面が最初の位置であると考えて描けばよく図のようになります。

XとYの共通部分は図の黒い線になります
これら高さが8cm,9cm,10cmの断面図から,黒い点が同じ位置にあることに注意して立体の図を描いてみます。
H31nada2-5-kaisetu1.jpg
底面積が4×2÷2=4cm^2,平均の高さが(4+4+4)÷3=4cmの断頭三角柱の部分と
青い部分の底面積が4×2÷2=4cm^2高さが2cmの三角すいに分けて考えて

4×4+4×2÷3=56/3cm^3
とわかります。

(3)高さ6cm,7cm,8cmの断面の図から考えて黒い点が同じ位置であることに注意すると
図のようになります
H31nada2-5-kaisetu2.jpg
対角線の長さが8cmずつの正方形を底面とした高さ2cmの直方体から
底面積が4×2÷2=4cm^2,高さが2cmの青い三角すい3つを取り除いて
8×8÷2×2-4×2÷3×3=56cm^3

とわかりました。(畠田)

灘中学校 算数(2日目)2019(H31)入試分析 その2

前回の灘中学校、2019年度算数2日目大問1と大問2に続いて大問3をとりあげます。

ただ単に頂点を通った光はどこに到達するか考えて結べばいいだけの問題ではなく,辺を通った光がどう到達するか考えないといけない問題なので,曖昧な理解を明確な理解にレベルアップさせてくれる非常に良い問題です。
きちんとした論理の組み立てとしては算数に役立つ数学的な空間図形で勉強になります。

○大問3
右の図のように,板①と板②が垂直に置かれています。板①と板②のつなぎ目の直線をXYとします。板①にかかれた正方形ABCDは一辺の長さが10cmです。また,直線ADと直線XYは平行で,ABとXYが交わる点をEとすると,AEの長さは10cmです。BFは長さが10cmで,板①に垂直であり,点Fに電球が置かれています。電球の大きさは考えないものとします。
H31nada2-3-m1.jpg

(1)
一辺の長さが10cmの正方形の板を,板②と平行に,1つの辺がADと重なるように置きます。板①と板②にできるこの正方形の板の影の面積の和は
[   ]cm^2です。ただし,板は光を通さず,板の厚さは考えないものとします。
H31nada2-3-m2.jpg

(2)
底辺の長さが10cmで高さが10cmの二等辺三角形の板を,板②と平行に,底辺がADと重なるように置きます。板①と板②にできる二等辺三角形の板の影を,例にならって右ページの上の図にかきいれなさい。
H31nada2-3-m3.jpg

H31nada2-3-m4.jpg

H31nada2-3-m5.jpg
解答欄

(3)
一辺の長さが10cmの正方形を底面とし,高さが10cmである四角すいの石像を,底面が正方形ABCDと重なるように置きます。この四角すいのA,B,C,D以外の頂点をOとすると,OA,OB,OC,ODの長さはすべて等しくなっています。この四角すいの石像の影が板①と板②にできます。
H31nada2-3-m6.jpg

(ア)板①と板②にできる四角すいの石像の影を,(2)の例にならって右の図に書きいれなさい。
H31nada2-3-m5.jpg
解答欄

(イ)板①と板②にできる四角すいの石像の影の面積の和を求めなさい。ただし,正方形ABCDは含めません。

[解説]
(1)は図のように真上から見た図でFとA,FとDを結んで直線を引いてXYとの交点E,E’をとり,AとDとEとE’と板②のFの影の2点の各点を結べばよく図のようになります。
H31nada2-3-kaisetu1.jpg

これで面積は20×20-10×10÷2=350cm^2と出せます。

ただ(2)と(3)では板①や②に垂直または平行ではない辺が出てくるので,影はどう求めればいいかできるもう少しはっきりさせる必要があります。

そこで辺による影が影の境界になるので
その辺の両端の点と点Fの3点を通る平面を考えて,その平面と板①や,その平面と板②の交線(平面が交わって出来る直線)が影の境界になります。

(2)
H31nada2-3-kaisetu2_201902161841476bb.jpg
二等辺三角形の頂点Gとして辺GAによる影は,3点F,G,Aを通る平面との交線になると考えます。すると直線FGと板①は平行なので板①にできる境界は点Aを通り直線FGと平行な直線上になります。
同じように考えて辺GD側による境界も,点Dを通り直線FGと平行な直線上になります。
H31nada2-3-kaisetu3.jpg
板②の方は板①に出来た影の境界とXY上の交点と,光が点Gを通って板②に到達した点をそれぞれ結んでこのようにできあがります。

(3)同じように辺OAによる影は,3点F,O,Aを通る平面との交線になると考えます。すると直線FOと板①は平行なので板①にできる境界は点Aを通り直線FOと平行な直線上になります。
辺OD側も同じです。
H31nada2-3-kaisetu4.jpg

板②の方も同様にしてこのようにできあがります。

面積はマス目14個分より5×5×14=350cm^2とわかります。(畠田)

PAGE TOP