数理教育研究会

切断

甲陽中学校 算数(1日目) 2021(R3)入試分析

甲陽学院中学算数1日目の問題をとりあげます。

【入試資料分析】
受験者数 389名→363名→350名→349名→317名→382名→369名→402名→393名→383名→380名
合格者数 218名→216名→219名→219名→215名→220名→219名→222名→220名→217名→215
実質倍率 1.78倍→1.68倍→1.60倍→1.59倍→1.47倍→1.74倍→1.68倍→1.81倍→1.79倍→1.76倍→1.77倍
例年程度の倍率となりました

各科目の得点情報は算数1日目は例年程度の易しさ、2日目はここ数年では一番高くなりました。
その影響により算数の合計得点の平均点も高くなっています。

受験者平均
国語① 64.9→49.4→63.1→62.0→56.5→53.6→55.2→56.9→63.3→53.9
国語② 59.9→59.0→69.5→49.3→60.7→59.7→52.8→60.8→64.5→55.1
算数① 56.0→49.8→60.3→62.1→58.3→58.9→62.1→63.8→60.7→61.9
算数② 54.0→56.3→61.4→53.1→47.5→54.3→58.3→40.3→50.4→63.2
理科  54.7→52.1→67.9→53.7→59.8→56.9→47.9→62.8→53.9→52.1
合格者平均
国語 132.0→114.9→138.1→117.7→125.4→119.9→117.1→125.2→133.5→116.2
算数 128.6→122.6→138.3→127.2→119.0→130.5→141.4→122.6→129.0→143.8
理科 58.8→58.1→71.7→57.1→59.8→60.6→53.3→67.6→58.6→56.4

算数の(①の平均点)+(②の平均点)は
110.0→106.1→121.7→115.2→105.8→113.2→120.4→104.1→111.1→125.1
これと合格者平均との差は
18.6→20.5→16.6→12→13.2→17.3→21→18.5→18→18.7

例年程度に差のつく試験であったと言えます。

【問題分析】
大問1…(1)計算問題。2021=43×47ネタはやはり出ていきます。(2)二等辺三角形を利用していく角度の問題で、典型的な問題の少し応用程度です。

大問2…仕事算の典型題。素早く完答したい。

大問3…正射影する問題。今回は(2)を扱います。

大問4…甲陽でよく出題される整数を数える問題。(2)は3種類の数字どの組み合わせも12個というアプローチをとることができると早く解ける。

大問5…平面図形の問題。特別難しいわけではないような難関校レベルでの標準的な図形問題を練習しておけば特に問題はない。

大問6…旅人算。甲陽なので高度な解法が必要と見せかけて、情報を整理すると一つ一つ求まり意外と簡単な方法しか使わない。

それでは大問3(2)にいきましょう。
正射影するところがポイントです。

(問題)R3 甲陽学院中学校 算数(第1日) 大問3(2)
図のような、立方体の各辺の真ん中の点を結んで出来た立体Xがあります。


(2)BN:NE=1:2となるように辺BE上に点Nをとります。点Nを通り、面BCFに平行な平面で立体Xを切断するとき、立体Xの断面積は面BCFの面積の何倍ですか。

 

[解説]
これは面BCFを含む平面に正射影して考える定番の方法があります。
面BCFに垂直な方向で見るわけです。

正八面体である面に垂直に見ると正六角形になるという解法がありますが、同じように考えてくれたらよいです。

すると面BCFに垂直な方向で見ると立方体であった部分は図の破線部の正六角形になります。

そして青で囲まれた部分が立体Xの断面になります。

この面BCFに垂直な方向で見た図における2つの赤い三角形は合同になっているので
BC=③
とすると
AE=③
であり
BN:BE=1:(1+2)=1:3よりMN=①となります。


ということは断面は図のように1辺の長さ⑤の正三角形から1辺の長さ①の正三角形を三つ取り除けばよいので
(5×5-1×1×3)÷(3×3)=22/9倍とわかりました

解法が思いつかなさそうな難しい問題などは特にはありませんでしたが思ってたほど平均点は高くなりませんでした。しっかり対策して普通の問題をばっちり解けるようにすればそれだけ報われて合格者平均をこえることができる試験であったと思います!がんばってください!(畠田)

灘中学校 算数(2日目)2021(R3)入試分析

灘中学校の算数2日目をとりあげたいと思います。

1日目の記事に書いてるように2日目の平均点は例年程度の高めのラインでした。
しかし目新しい問題はなく過去問や難関校の類題ばかりであったことを考えると、もう少し平均点高くて良かったんじゃないかと個人的には思います。
それもコロナの影響なのかもしれないし、もしかすると問題の読み間違えが多かったこともあったのかもしれません。


【問題分析】
大問1…濃度の問題。濃度としての高度な問題というわけでもなく、何回ずつとるかという整数問題が絡んでいます。思ったよりも当たり前な答えになるので逆に戸惑ったかもしれません。

大問2…パスカルの三角形の問題。灘や難関校でやり尽くされた問題で、よく練習している子は瞬殺であったと思います。

大問3…平面図形の問題。正六角形をネタとした標準的な解法の問題で、完答しておきたい。

大問4…灘でよく出る操作の問題。過去問で練習していれば、簡単であったと思います。しかし、あまり練習していなければ、意図が分からずに最初の9つの空欄を埋めるところで玉砕したかもしれません。

大問5…立体の切断の問題。典型問題なので練習している人は瞬殺できたと思います。わかりやすく誘導もされています。今回はこの問題の(2)を扱いたいと思います。


(問題)R3 灘中学校 算数第2日 大問5
図1は、1辺の長さが6cmの立方体ABCD-EFGHです。この立方体の面EFGHは水平な地面についています。
この立方体から、図2の斜線部分の正方形を底面とし、高さが6cmの直方体をくりぬきます。次に、図3の斜線部分の正方形を底面とし、高さが1cmの直方体をくりぬきます。さらに、図4の斜線部分の正方形を底面とし、高さが1cmの直方体をくりぬきます。このようにしてできる図5の立体をPとします。

(1)立体Pの体積は[   ]cm³です。

(2)立体Pを、頂点A,C,Fを通る平面で切って2つの立体に分けたとき、頂点Bを含む方の立体をQとします。

(ア)右の図は、立方体の面EFGHから5cmの高さにある平面で立体Qを切ったときの真上から見た切り口を書き入れたものです。その平面と面AEFBの交わりを太線で表しています。立方体の面EFGHから4cm,3cm,2cmの高さにある平面で立体Qを切ったときの真上から見た切り口を、右の図にならってそれぞれかき入れなさい。

(イ)立体Qのうち,面EFGHから2cmの高さになる平面と面EFGHとではさまれた部分の立体の体積を求めなさい。

[解説]
(1)省略
(2)

(ア)で高さ4cm,3cm,2cmの切り口を書かされています。
これが誘導になっています。

同じように高さ6cm,5cm,4cm,3cm,2cm,1cm全部書いてみます。

1cm×1cm×1cmの小立方体の集合であると考えると、切り口の図は各層の小立方体が並べられていると考えることができます。

すると小立方体何個分か?という問題になります。

小立方体は何個切断されますか?と言う問題と同じように考えます。

青のラインが小立方体の上面、赤のラインが小立方体の下面です。

すると青のラインで小立方体を切断すると1/6個分が残ります。

赤のラインで小立方体を切断すると5/6分が残ります。

なので立体Qのうち面EFGHから2cmの高さになる平面と面EFGHとではさまれた部分の立体の体積は小立方体が
高さ2cmでは青のライン2個、赤のライン1個
高さ1cmでは青のライン1個
なので
1/6×3+5/6=4/3個分より
4/3cm³
とわかります。

Qの体積は小立方体が全部で
ラインが通っていないもの16個
青のライン7個
赤のライン7個
より
16+(1/6+5/6)×7=23個分より
23cm³とわかりました。


誘導も丁寧でどうやって解くのかわからないという問題はありませんでした。しかし平均点は思ったよりも高くなかったので、しっかり過去問で練習しておいてください。まずは過去問です。過去問を研究しつくしましょう(畠田)

ラ・サール中学校その2 入試分析 算数 2018(H30)

今回もラ・サールの問題をもう一つとりあげたいと思います。

立体図形の問題で、難しいわけではないけど切り口がどのようになるか考えていく過程にポイントがあります。

(問題)H30 ラ・サール中学校 算数 大問6
rasa2018m1.jpg
図のような立方体の頂点Aから、3つの点P,Q,Rが同時に出発し、PはA-B-C-G、QはA-D-H-G,RはA-E-F-Gの順に、それぞれ辺上を同じ一定の速さで移動して、12秒後に点Gに着きます。3点P,Q,Rを通る平面でこの立方体を切ったときの切り口の面積をSとするとき、出発して4秒後のSは12㎠でした。このとき、次の場合のSは何㎠ですか。

(1)出発して3秒後
(2)出発して6秒後
(3)出発して7秒後

(1)12秒で3辺分進むので,4秒で1辺分進みます。

rasa2018k1.jpg
図において4秒後は青い三角形,3秒後は黒い三角形になるので相似比は
(青い三角形):(黒い三角形)=4:3
面積の比は
(青い三角形の面積):(黒い三角形の面積)=4×4:3×3
=16:9
よって青い三角形の面積は12㎠から
(黒い三角形の面積)=12×9/16
6.75㎠

(2)6秒後の動点は辺の中点になりますが,どれも同じ平面上にないので切り口を考えるのが難しいです。
rasa2018k21.jpg
そこでRとPの2点を結んだ線分を延長して面DHGCを含む平面との交点と点Qを結ぶとDCの中点(赤い点)を通ることがわかります。
rasa2018k22.jpg
ここまでこれば,正六角形になるとわかりますね。
(赤の正三角形の1辺の長さ):(青の正六角形の1辺の長さの)=1:2
です。

rasa2018k23.jpg
よって図より小正三角形の個数に注目して
(赤の正三角形の面積):(青の正六角形の面積)=4:6=2:3
(青の正六角形の面積)=12×3/2=18㎠

となります。

(3)同じように7秒後を考えたらよいわけですが、ここで(1)(2)から3秒後と4秒後と6秒後の切り口は全て平行になっていることに注目して解いてみます。
8秒後も切り口は平行になります。
rasa2018k3.jpg
と言うことは図のように3:1となる点を結んだ緑の平面になることがわかります。

rasa2018k31.jpg
小正三角形の個数を数えて
(青の正三角形の面積):(緑の六角形の面積)=16:22
=8:11
よって
(緑の六角形の面積)=12×11/8
16.5㎠
とわかりました。

わかりやすい値で具体的に切り口を考えてみると、解法の糸口がつかめて途中の切り口が見えてきます。
このようなアプローチの仕方も取り入れてみると、点数につながります(畠田)

渋谷教育学園幕張中学校 算数 問題 解説&入試分析★2018年(H30年)第1回

今回は渋谷教育学園幕張中学の一次をとりあげます。

2018年度は
受験者、男子1411人、女子593人、計2004人
合格者、男子520人、女子191人、計711人
倍率は2.8となっています。

各教科の平均点は(受験者平均点,合格者平均点)の順で
国語(50.3,59.7)
算数(48.9,59.2)
社会(36.8,42.5)
理科(29.3,38.9)
合格最低点が179/350

相変わらず難易度の高い問題が多いですが、渋幕としては例年程度だったと思います。

難関校に多そうな立体図形の切断の問題をとりあげます。
渋谷教育学園渋谷中学2018年で立方体を切断しましたが、それの直方体版です。

(問題)H29年 渋谷教育学園幕張中学校 第1回 大問5
図のような直方体があり、辺AB上に点Pを、辺BC上に点Qを、PBとQBの長さがどちらも2cmになるようにとります。
また、辺EF上に点Rを、辺FG上に点Sを、RFとSFの長さがどちらも6cmになるようにとります。4つの点P,Q,R,Sを通る平面でこの直方体を切り、点Aを含むほうの立体を(あ)とします。
sibumaku2018m1.jpg

このとき、次の各問いに答えなさい。
ただし、角すいの体積は、(底面積)×(高さ)÷3で求められるものとします。
(1)立体(あ)の体積は何㎤ですか。
(2)立体(あ)を面PRSQが底面になるように平らなゆかの上におきます。このとき、点Dはゆかから何cmの高さにありますか。

(1)
sibumaku2018k1aa.jpg
直方体の体積から図の赤の実線部分の三角すいTPBQの体積を引きます。

小さい三角すいTPBQと大きい三角すいTRFSの相似比は
2:6=1:3
です。
大きい三角すいの高さTF=BF×3/(3-1)=12cmで
体積比は
(大きい三角すい):(赤の実線部分)=3×3×3:(3×3×3-1×1×1)=27:26
より
(赤の実線部分)=(大きい三角錐すい)×26/27=△FRS×TF×1/3×26/27=208/3㎤
よって
(あ)=8×12×10-208/3=2672/3㎤

(2)平面PRSQを底面と考えたときの点Dの高さを求めなさいと言う問題になります。
色々な解法が考えられそうですが,
(1)で考えた小さい三角すいTPQBは1:1:2です。
sibumaku2018k21.jpg
これは赤の三角形の面積が展開図を考えれば求まる有名な三角すいです
sibumaku2018k22.jpg
もちろん体積もわかるので,赤の三角形を底面と考えると,高さもわかります。
赤の三角形は平面PRSQ上にあるので,底面PRSQに対して点Bの高さが求まることになります。
点Dの高さを求めるには,点Bの高さが使えないかを考えてみることにします。

まず点Bの高さを求めていくと
(赤の三角形の面積)=(正方形)-(青の三角形)-(黄の三角形)-(緑の三角形)
=4×4-2×4÷2-2×2÷2-2×4÷2=6㎠
(小さい三角すいの体積)=2×2÷2×4÷3=8/3㎤
よって赤の三角形を底面としたときの高さは8/3×3÷6=4/3cm

ここで一つの方法として点Dと点Bの高さの比を考えてみます。
sibumaku2018k3aa.jpg
図のように平面PRSQで平行な面で等間隔になるようにスライスすると
点Bから平面PRSQまでは1つ,点Dから平面PRSQまでは10つ層があるので
(点Dの高さ):(点Bの高さ)=10:1
であることがわかります。

実際には
sibumaku2018k4.jpg
上面において相似比
(赤と直角二等辺三角形):(青の直角伊藤辺三角形)=AP:UB=10:1
から10:1と計算すればよいです。

よって
4/3×10=40/3cm
とわかりました。

渋幕の立体図形の問題は難しいですが,典型的な解法で解けるには解けます。
色々な学校の立体図形の問題で練習して使えるようにしておきましょう(畠田)

PAGE TOP