数理教育研究会

雙葉

雙葉中学校 算数 問題解説&入試分析★2020年(R2年)

今回は雙葉学園中学を扱います

【入試資料分析】
受験者数391人
合格者数118人
で倍率3.31となり例年よりも高くなりました。

【問題分析】
大問1…(1)計算問題、確実にあわせたい。(2)消費税をネタとした基本的な比の問題。(3)一度はやったことあると思われる同じパターンが続く図形の問題です。大問1は満点狙いです。

大問2…少し面倒ですがカレンダーを書いて足していけば良いので正解したいです。

大問3…今回はこれを扱います。

大問4…群数列と倍数の融合問題です。(1)は計算としては2または3の倍数の個数を数えて取り除く簡単な問題です。(2)計算としては3の倍数をとりのぞけば良いですが、1グループと2グループには3がないことに注意です。(3)5,15,20,25,30と約分されないか整理して数えていけばよいですが,25は2回5で割れることに注意です。

大問5…(1)計算としては簡単ですが状況を理解するためにダイアグラムなどかいて整理して解きましょう。(2)Cで11分休み終わったときにちょうどバスがやってくるとすれば、そのバスはA地点をいつ出発すればよいか考える方法などあります。(3)難しいことは問われていませんが、複雑な状況を整理して答にいきつくのは難しいかもしれません。

(問題)R2 雙葉学園中学 大問3
図のように、正十角形の頂点を結び、正五角形をつくりました。
futaba20m1.jpg
(1)(あ)の角度は何度ですか。
(2)この正十角形の面積は470cm^2、正五角形の面積は380cm^2です。かげをつけた部分の面積は何cm^2ですか。

[解答]
(1)正十角形の一つの内角の大きさは180×(10-2)÷10=144°なので
(180-144)÷2=18°
とわかりました。

(2)まず簡単に思い浮かぶわかりそうな面積は
赤の三角形Aの面積
青の三角形Bの面積
hutaba_2020_kaisetu_m3-1.jpg
そして
A×2-B
で求められる緑の三角形Cの面積です

(1)で18°を求めさせられたのでこれを使うのではないかと三角形Cを作ってみると
残りの部分にオレンジの三角形Dが出来て、これは図のもう一つのオレンジの三角形と合同です。

ということは
(赤の三角形A)+(緑の三角形Cの半分)×2
で求められるので
470÷10+(470-380)÷5=47+18=65cm^2
と求まりました。

アプローチの仕方がわからないときは前の小問がヒントになっていることが多いので必ず考えてみるようにしましょう。そうすれば差をつけることが出来て合格間違いなしです!(畠田)

雙葉中学校 理科 問題解説&入試分析★2020年(R2年)

今回は雙葉学園中学の理科を扱います

【問題分析】
大問1…手回し発電機の問題です。開成中学でも同じような問題がでました。ルールを理解すれば簡単なので読み間違えたり、ミスで点数を落としたくないところです。

大問2…腕の骨の本数など少し細かい知識が出題されました。基本的には読解で答えていけると思います。

大問3…化学分野の問題です。混ざらない液体では密度が軽い方が浮きます。問4は高校の範囲のセッケンを作る問題とは言え解き方は,普段の中和などの問題と同じです。今回は問3を扱います。

大問4…日食、月食の問題です。あまり知識問題というわけではなく、考えて解くことになります。図を描いて計算したり考えて解く練習をしておきましょう。

(問題)R2 雙葉学園中学 大問3問3
油は「脂肪酸」以外に「グリセリン」と呼ばれる部分からつくられています。グリセリンは下図のような構造をしており,脂肪酸が3か所で結びついています。
futaba20ri1.jpg
脂肪酸には様々な種類(ここではA,B,C,…とします)があり,例えば3つとも違う脂肪酸でできている油もあれば,2つが同じもので,もう1つがちがうものでできている油もあります。グリセリンにAとBを結びつけてできる油は何種類ありますか。ただし,3つとも同じ種類の脂肪酸を使ってもよいものとします。また(例)のように回転したときに同じ組み合わせになるものは,合わせて1つと数えることとします。

[解説]
算数の問題です。
非対称と対称にわけて考えると

対称なもの
AAA BAB ABA BBB
非対称なもの
AAB ABB
6種類になります。

これは内容としては高校化学の油脂の問題です。
CH2-O-COR
|
CH-O-COR’
|
CH2-O-COR”
解くためには算数の場合の数をやっていれば大丈夫なので焦らずに対応できるよう経験を積んでおきましょう!(畠田)

雙葉中学校 算数 問題解説&入試分析★2018年(H30年)

雙葉中学をとりあげます。

受験者数299人、合格者数120人で倍率2.5です。
昨年の倍率が2.96で今年は下がりました。

今年の問題は例年ような「解法は単純で計算が複雑」と言うわけではなく,どの問題もひねりが効いていてレベルの高い解法が問われる問題でした。

それでは勉強になりそうな展開図と場合の数の問題をとりあげます。
(問題)H30年 雙葉中学校・算数 大問5
[図1]の立体の4つの面は、すべて合同な正三角形です。この立体のそれぞれの面に1、2、3、4の数字を書きました。
ある方向から見ると[図2]、別の方向から見ると[図3]のようになりました。
hutaba2018m1.jpg
(1)この立体の展開図を完成させましょう。また、向きを考えて2、3、4の数字も書きましょう。

hutaba2018m2.jpg
(2)この立体を、4と書いた面を下にして置きます。ここから、辺を軸にして立体を倒して、下にきた数字を足していきます。
① 3回倒して、和が6となるときの下にきた数字の出方をすべて書きましょう。
必要なら答えの線をのばして書きましょう。(考え方と答え)
hutaba2018m3.jpg
② 5回倒して、和が13になるときの下にきた数字の出方は全部で何通りですか。(考え方と答え)

(1)頭でイメージを考えると混乱して焦ってくる人もいるので、頂点うちをしたら良いですね。
hutaba2018k1.jpg
更には数字の向きも考えないといけないので、数字の頭はどの頂点の方向に向いてるかもチェックします。
図の打ち方では
1は△ABCで頭はA
2は△ADBで頭はB
3は△BCDで頭はC
4は△ACDで頭はD
です。

hutaba2018k2.jpg
1の頭がAに向くように△ABCの頂点をうちます。
図のように展開した場合は残りの頂点はすべてDですね。
後は
△ADBに頭がBになるように2
△BCDに頭がCになるように3
△ACDに頭がDになるように4
を書き込めば出来上がりです。

(2)
四面体を転がしていくわけですが,次に下になる可能性がある数字は今の下にあるもの以外の数字全部です。
単純化すると同じ数字が連続しないように数字の並びを決めていけばよくなります。

ここからは図形問題ではなく,同じ数字が連続しない並べ方の場合の数の問題です。

「数字の組み合わせを考える→並べる」
の手順で数えていく方針でやってみます。

数字の組み合わせを考えるときは漏れなく重複ないように
○≧□≧△≧…
となるように右の数字は左の数字以下のルールで数えることにします。


1,2,3,4を重複を許して3つ使って和が6になる数字の組み合わせは
411
321
222
最初に4がこないように並べると
(a)411の並べ方
1→4→1
(b)321の並べ方
1→2→3
1→3→2
2→1→3
2→3→1
3→1→2
3→2→1
(c)222の並べ方
2が連続するのでなし

よって7通りとわかりました。


1,2,3,4を重複を許して5つ使って和が13になる組み合わせは
44311
44221
43321
43222
33331
33322
です。

次に4が先頭にこないように並べると
(a)44311の並べ方
hutaba2018k3.jpg
樹形図より7通り

(b)44221の並べ方
44311の場合で1と2を書きかえたらよいので同じ7通り

(c)43321の並べ方
・3から始めると次は1,2,3,4の4つの数字を3が先頭にこないように並べて3×3×2×1=18通り
・1から始めると○△○△○において△に2と4を並べて2通り,○に2つの3を入れて3通りで2×3=6通り
・2から始めるものも1から始めるのと同じで6通り

(d)43222の並べ方
2○2○2の○に3と4を並べて2通り

(e)33331の並べ方
3がどうやっても連続するのでなし

(f)33322の並べ方
32323の1通り

以上より7+7+18+6+6+2+1=47通りとわかりました。

大変な問題ですが,立体図形や展開図の解法,問題をシンプル化,漏れなく重複なく数えるための整理の仕方など有用なものを多く使うので勉強に良い問題です。
しっかり勉強しておきましょう(畠田)

PAGE TOP