麻布
麻布中学校 理科 問題解説&入試分析★2020年(R2年)
今回は麻布中学校の理科を取り上げます。
【問題分析】
大問1…動物の誕生の問題です。問2ではうなぎの幼生レプトセファルスを知ってるかなど、わりとマニアックな知識は問われています。しかしリード文を読めば海流に乗って移動すると書いているなど、基本的には問1以外は読解力を問われています。
この問題は養殖のウナギは河口にやってきたシラスウナギを捕まえているので結局ウナギは減少する、養殖で育てて放流しても養殖ではほとんど全てオスになるので卵を産むウナギはほとんどできないことなど勉強になります。
大問2…バターを使ったパイ、パウンドケーキ、クッキーがどのようにして膨らむのかなどの問題で内容は化学です。リード文に生クリームは絞った牛乳の表面に浮かび上がってくる、水分を少なくして現れた固体がバター、バターには15%の水分が含まれていることなど書いているのでそれらを使って解いていくことになり、読解力が必要です。
この問3を扱いと思います。
大問3…光の問題です。長いリード文を読みフェルマーの定理を理解して考えて解いていくことになります。この問8も扱いたいと思います。
大問4…大地の変化の問題です。これも長いリード文を読みとり、考えて解いていくことになります。風化には物理的風化、化学的風化などがあり、読み取って答えていきます。風化には気候を一定に保とうするはたらきがあることも面白いです。
(問題)2020年度 麻布中学校 理科 大問2の問3
小麦粉には主にデンプンとタンパク質が含まれています。小麦粉と水を混ぜてパイ生地を作ると、タンパク質どうしはつながってグルテンと呼ばれるやわらかく弾力のあるものに変わります。グルテンはそのまま焼くとかたくなります。このグルテンを含んだパイ生地にバターをはさむと、図1のようにパイ生地が2層になります。これらを二つ折りにすると、図2のように内側の生地どうしはくっついてしまうので、パイ生地は3層になり、図3のように三つ折りにするとパイ生地は4層になります。このようにバターをはさんだパイ生地を、平らに伸ばしてから再び織り込むことを何度か繰り返して、200℃~220℃の高温で素早く焼き上げると、たくさんのうすい層を持つパイができあがります。
(1)図1のパイ生地を2回三つ折りするとパイ生地の層は何層になりますか。
(2)図1のパイ生地を5回三つ折りするとパイ生地の層は何層になりなすか。
[解説]
(1)
図のように2つの赤い矢印のところで生地がくっついて2層減ります。
4×3-2=10層
(2)同様にして考えると
3回で10×3-2=28層
4回で28×3-2=82層
5回で82×3-2=244層
とわかりました。
(問題)2020年度 麻布中学校 理科 大問2の問3
17世紀後半にフェルマーは、光の進み方に「二点間を進む光は、考えられる経路のうち、進むのにかかる時間が最も短い経路を通る」という決まりがあるのではないかと考えました。たとえば、光源から出た光は真っすぐに進むという性質がありますが、フェルマーの考え方を用いれば、光がこのような性質をもつのは、真っすぐ進む方が遠回りして進むよりも、かかる時間が短いからであると説明できるのです。
光が曲がって進む現象は、宇宙でも観測されることがあり、太陽などの重い星の近くを通過するときは、光が曲がることが知られています。この原因を、次のように単純化して考えてみましょう。図8は、四隅が固定された軽いテーブルクロスが空中に張られた様子を真上から見たものです。このテーブルクロスの上に球を静かに置くと、図9のように、球の周辺部分のテーブルクロスが伸びてたわみました。ここで、置く球をさらに重いものに交換した後、アリがテーブルクロスの上を、図8の点Pから点Qに向かって、途中で速くなったり遅くなったりせずに、決まった速さで進む場合について考えます。
問8 テーブルクロスの上に置かれた球がとても重いとき、点Pを出発したアリは、図8に示した経路のうちのどれを通ったときに、点Qまで到達する時間が最も短くなると考えられますか。ア~エから1つ選び、記号で答えなさい。
[解説]
PとQを直線で結ぶと赤い直線のようになります。
これは最短経路になります。
よって図のようにテーブルクロスに書き込むと赤い線が光の経路でエとなります。
このたわみのないテーブルクロス(座標)が三次元空間の観測者にとっての位置関係で自分たちは自分たちのいる空間が曲がっていると感じませんが、
一つ次元の高い四次元空間の神視点の観測者にとっては、たわみのあるテーブルクロスのように曲がっているように見えます。
歪みは一つ次元が大きい空間でしか表現できないので、前上から見る(正射影する)という言葉で次元を一つ落として、テーブルクロスがたわんでいない三次元の空間を表現しています。
ちなみにこの星Qにいる人から星Pを見た場合は,星PはP’の位置に見えます。
(畠田)
麻布中学校 算数 問題解説&入試分析★2020年(R2年)
今回は麻布中学校の問題を取り上げます。
【入試資料分析】
去年に続いて倍率が高めになりました
出願者数 1016名
合格者数 383名
倍率2.65
最高点 151/200
最低点 110/200
配点は国語60点算数60点理科40点社会40点
【問題分析】
大問1…比の問題です。差を考えたら☐が消えるので比をあわせられるという文章問題の計算でよくある問題です。しっかり取りましょう。
大問2…(1)90°の扇形から直角二等辺三角形を引きます。これは確実におさえましょう。(2)工夫が必要です。下にも円を描いて4等分の直線を伸ばしたりなどすれば見えてきやすいかもしれません。考えてみてください。
大問3…(1)場合の数の典型です。瞬殺してください。(2)3で割った余りをグループ分けすると余り1のグループ1と4,余り2のグループ2と5、余り0のグループ3と6で偶数と奇数が1個ずつですね。ぜひやってみてください。シンプルですが思考が必要なうまい問題です。
大問4…食塩の問題です。天びん法で特に迷いなく解けます。これは確実にとりたい。
大問5…やはり麻布は正六角形の問題をだしてきます。円と正三角形のマスの直線との接点に注目してください。
1/6の場所を考えて6倍すればよいので丁寧にかけばそれほど難しくないと思います。
大問6…麻布お決まりの最後の重い問題です。これを扱います。
(問題)2020年度 麻布中学校 算数 大問4
周の長さが1mの円があります。図1のように,この円の周上を点Aは反時計回りに,点Bは時計回りにそれぞれ一定の速さで動きます。点Aと点Bは地点Pから同時に動き始め,2点が同時に点Pに戻ったら止まります。以下の問いに答えなさい。
(1)点Aの動く速さと点Bの動く速さの比が3:5のとき,点Aと点Bが同時に地点Pに戻って止まるまでに,2点P以外で何回すれ違いますか。
(2)点Aの動く速さと点Bの動く速さの比がア:イのとき,点Aと点Bが同時に地点Pに戻って止まるまでに,2点は地点P以外で14回すれ違いました。このとき,ア:イとして考えらえるものをすべて,できるだけ簡単な整数の比で答えなさい。ただし,点Aよりも点Bの方が速く動くものとします。また,解答らんはすべて使うとは限りません。
次に,周の長さが1mの円を図2のように2つ組み合わせます。これらの円の周上を,点Aと点Bはそれぞれ一定の速さで次のように動きます。
・点Aは5つの地点P,Q,R,S,Tを,P→Q→R→P→S→T→Pの順に通りながら,繰り返し8の字を描くように動く。
・点Bは5つの地点P,Q,R,S,Tを,P→T→S→P→R→Q→Pの順に通りながら,繰り返し8の字を描くように動く。
点Aと点Bは地点Pから同時に動き始め,2点が同時に地点Pに戻ったとき止まります。以下の問いに答えなさい。
(3)点Aの動く速さと点Bの動く速さの比が3:8のとき,点Aと点Bが同時に地点Pに戻ってとmなるまでに,2点A,Bが動いた道のりは合計何mですか。また,2点は地点P以外で何回すれ違いますか。
(4)点Aの動く速さと点Bの動く速さの比がウ:エのとき,点Aと点Bが同時に地点Pに戻って止まるまでに,2点は地点P以外で6回すれ違いました。点Aよりも点Bの方が速く動くものとすると,ウ:エとして考えられるものは9通りあります。これらをすべて,できるだけ簡単な整数の比で答えなさい。
[解説]
(1)と(2)は簡単に答えます。
(1)Aが3周するとBは5周するので3+5-1=7回
(2)アとイの比をもっとも簡単な整数であらわしたものをA,Bとおくと
AとBは互いに素でA<Bなので
A+B=14+1=15より
(A,B)=(1,14),(2,13),(4,11),(7,8)
(何故互いの素な場合なのか考えてみてください)
(3)
まずは実験してみましょう。
3:8なので3+8=11より円1周分の長さを[11]とします。
1回目のすれ違いは二人の進んだ距離の和は円2周分です。
この時Aの進んだ距離は[22]×3/11=[6],Bの進んだ距離は[22]×8/11=[16]
となります。
次に2回目のすれ違いは同じようにAをさらに[6]進ませて[6]+[6]=[12]なのでPから[1]進めたところです。Bは[16]+[16]=[32]進んでいます。
するとAを[6]進ませていって点を打っていけばよいことがわかります。
二人が同時に点Pにつく3+8=11周分、つまりAが[11]×11×3/11=[33]進めたところまで考えればいいので打っていくと
5回目のすれ違い[30]から次は[3]進んで[33]となります。
何故最後だけ円1周分なのかと言うと,点Pは重なっている点なので直前のすれ違いから二人の進んだ距離の和が円1周分で点Pに戻ることがあるわけです。
以上のことより答えを求めるだけの計算としてはAは円3周分進むとBは円8周分進むので3+8=11
2+2+2+2+2+1=11より2が5つで5回となります。
(4) (3)についてもう少し考えると11は奇数でしたがAとBの速さの比が3:7の場合なら3+7=10で偶数です。
このときは全部円2周分ずつで点Pに到達します。
まとめるとAとBの速さの比を最も簡単な整数であらわしたときに
和が奇数であれば二人の進んだ距離の和が円2周ごとにすれ違い最後は円1周分で同時にPに到達
和が偶数であれば二人の進んだ距離の和が円2周ごとにすれ違い最後も円2周分で同時にPに到達
○二人の進んだ距離の和が円2+2+2+2+2+2+1=13周分となるとき
AとBは互いに素でA<BとしてA+B=13に注意して
(A,B)=(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)
○二人の進んだ距離の和が円2+2+2+2+2+2+2=14周分となるとき
同様にして
(A,B)=(1,13),(3,11),(5,9)
となります。
麻布の最後の問題は具体的にやってみて実験することでわかってきます。
ぜひ自分で一つずつすれ違ったポイントを計算して追ってみたりしてやってみましょう。(畠田)
麻布中学校 算数 問題解説&入試分析★2019年(H31年)
今回は麻布中学をとりあげます。
【入試資料分析】
今年は例年に比べて倍率が高い年となりました
出願者数 1037名
合格者数 376名
倍率2.76
最高点 145/200
最低点 100/200
配点は国語60点算数60点理科40点社会40点
【問題分析】
○大問1
麻布定番の不定方程式です。
勉強すれば簡単な分野なので対策をして確実にとりましょう。
(1)A,B,Cの部屋の人数をa,b,cとして
AとCの温度の差は9-7=2度より
0.3×a-0.1×c=2
となればよくて10倍して整理して
3×a-c=20
a|7|8|9|…
c|1|4|7|…
となるのでBの室温がもっとも高くなるにはBの人数が多い、つまりa+cが小さいときになるので
(c,a)=(1,7)の場合になります。
(2)
(1)の組み合わせの時にA,Cの温度が同じになることを利用してやってみます。
つる亀算のこういう複雑な場合は,表を書いてどう変化していくかを考える整理の仕方があります。
A,Cの温度をAC,Bの温度をBとして
a | 7 | 8 | 9 | … |
c | 1 | 4 | 7 | … |
b | 33 | 29 | 25 | … |
AC | 9.1 | 9.4 | 9.7 | … |
B | 14.6 | 13.8 | 13 | … |
でaの人数を1人増やすとACの温度は9.4-9.1=0.3度上がり,Bの温度は14.6-13.8=0.8度下がるので0.3+0.8=1.1度,差が縮まる。
よって(14.6-9.1)÷1.1=5よりACは9.1から5人分温度があがれよいので
9.1+0.3×5=10.6度
関西ではつるかめ算はこういう風に表を書いて処理する方法を教えることが多く,東京では面積図を教えることが多いですが両方使えるようにして大きい人間になりましょう。
○大問2
ダイアグラムを書いてみるのがお決まりの処理です。
東京の学校で,しかも麻布となるとダイアグラムをかくとうまく問題をつかみやすいことが多いです。
まずは何かわからないけど,とりあえずダイアグラムを書くで良いと思います。
(1)ダイアグラムを書くと
青文字のところが10分-9分40秒=20秒=1/3分とわかり
赤い部分に注目すれば太郎君とバスの進む長さが同じだから時間の比と速さの比が逆比になるので
(太郎君の速さ):(バスの速さ)=(バスの時間):(太郎君の時間)=(3+1/3):1/3
=10:1
とわかりますね。
次の問題のために10:1を使って緑のところが6分と2/3分と求めておきます。
ダイアグラムをかきますが,5/2倍速い太郎君と,バスの速さの比を求めておきます。
(速太郎君の速さ):(バスの速さ)=1×5/2:10=1:4
よってかかる時間は逆比より図の赤い部分において③,④,①とおけます。
すると③=6より①=2分とわかるので☐の部分は1分とわかります。
緑のところに注目すると1:4を使って時間がそれぞれわかります。
速太郎君は4分で720m進むので720÷4=180m/分
太郎君は180÷5/2=72m/分=72÷60m/秒=1.2m/秒
とわかりました。
○大問3
切断の問題です。
きちんと長さを出せば求まるので,正解したいところです。
図より(白い部分):(赤い部分)=(上の平行四辺形):(下の台形)ですが上の平行四辺形と下の台形は高さが同じなので
(白い部分):(赤い部分)=(7+7):(7+56/11)=22:19
○大問4
3と7のLCMは21で3,6,…21が9個なので9個のセットに注目して規則性を考えます。
(1)
3+6+7+9+12+14+15+18+21=105
(2)
簡単な場合で考えてみると
2番目から10番目の和は
6+7+9+12+14+15+18+21+24=126
7+9+12+14+15+18+21+24+27=147
で21ずつ大きくなるので
77番目から85番目の和は
105+(77-1)×21=1701
(3)
1番目から99番目の和は
(1番目から9番目の和),(10番目から18番目の和),(19番目から27番目の和),…,(91番目から99番目の和)
を考えて初項105,公差が21×9=189の等差数列の1~11番目までの和なので
(105+105+21×9×10)÷2×11=11550
(4),(2)と同じように考えると
(1~99番目の和),(2~100番目の和),(3~101番目の和),…
は21×11=231ずつ大きくなる
よって(128205-11550)÷231=505より1+501=506番目
○大問5
今回はこの問題を扱いと思います。
毎年最後の問題を扱っていますが,麻布は最後の問題に見たことないような自分でその場で規則性を見い出す重厚な問題を出します。
(問題)H31年 麻布中学校 算数 大問5
中心に回転できる矢印が2本取り付けられた円盤があります。まず,この円盤の円周を7等分する位置に目盛りを振ります。さらに,図1のように,1から7までの数字が書かれた7枚のコインを各目盛りの位置に1枚ずつ置き,2本の矢印を1と2の数字が書かれたコインの方へ向けます。
ここで,次の【操作】を考えます。
【操作】矢印が向いてる目盛りの位置にある2枚のコインを入れ替え,その後2本の矢印をそれぞれ2目盛り分だけ時計回りに回す。
図1の状態から1回【操作】を行うと図2のようになり,さらに1回【操作】を行うと図3のようになります。
この操作について,以下の問いに答えなさい。
(1)図1の状態から7回【操作】を行うと,7枚のコインの位置と2本の矢印の向きはどうなりますか。下の図に1から7までの数字と2本の矢印をかき入れなさい。
(2)図1の状態から何回【操作】を行うと,1の数字が書かれたコインの位置と2本の矢印の向きが図1と同じになりますか。最も少ない回数を答えなさい。ただし,【操作】は1回以上行うものとします。
(3)図1の状態から何回【操作】を行うと,全てのコインの位置と2本の矢印の向きが図1と同じになりますか。最も少ない回数を答えなさい。ただし,【操作】は1回以上行うものとします。
次に,円盤の円周を90等分する位置に目盛りを振り直します。さらに,図4のように,1から99までの数字が書かれた99枚のコインを各目盛りの位置に1枚ずつ,1から順に時計回りに置き,2本の矢印を1と2の数字が書かれたコインの方へ向けます。
(4)図4の状態から何回【操作】を行うと,全てのコインの位置と2本の矢印の向きが図4と同じになりますか。最も少ない回数を答えなさい。ただし,【操作】は1回以上行うものとします。
[解説]
(1)まずは簡単な場合でやってみて、問題をつかめということですね。
1234567
↓
2134567
↓
2143567
↓
2143657
↓
7143652
↓
7413652
↓
7416352
↓
7416325
となります。
(2)2本の矢印が元に戻るのは操作が7の倍数の回の時なので操作が7の倍数回のことを考えます。
肝になるのは操作をシンプル化することです。
(1)より7回操作をすると1は3の位置に移動するので、これを1→3と書くと
1→3
3→5
5→7
7→1
と2目盛りずつ時計回りに進んでいきます。
よって7回の操作が4回で7×4=28回とわかりました。
(3)奇数の動きはわかったので偶数をみると
2→6→4→2
なので2目盛りずつ反時計回りに進んでいき3回の操作で元に戻ります。
よって7と4と3の最小公倍数を考えたらよいので
7×4×3=84回
(4)
7枚のときと同じように考えて99回操作すると奇数は2目盛り時計回りに移動して,偶数は2目盛り反時計回りに移動します。
よって奇数㋒は50回,偶数は49回で元に戻るので
99と50と49の最小公倍数を考えて
99×50×49=242550
とわかりました。
背景には群論がありますが,肝は操作のシンプル化です。
こういう処理の仕方、整理の仕方を覚えていくとアプローチできるようになってきます。(畠田)
麻布中学校 算数 問題解説&入試分析★2018年(H30年)
今回は麻布中学をとりあげたいと思います。
出願者数933人
合格者数378人
倍率2.45
合格最低点106/200
配点は国語60点算数60点理科40点社会40点です。
今年の算数は処理が複雑なものはほとんどなく、小問により誘導されているのでやりやすかったかもしれません。
それでは麻布恒例の最後の実験をして掴んでいく問題をとりあげます。
(問題)H30年 麻布中学校 算数 大問6
2をN個かけ合わせてできる数を<N>と表すことにします。例えば
<3>=2×2×2=8,<5>=2×2×2×2×2=32
となります。ただし,<1>=2と約束します。
(1)<1895>の一の位の数字は何ですか。
(2)<12>+<2>と<13>+<3>を計算しなさい。
(3)<2018>の下2桁を答えなさい。
ここで,下2桁とは十の位と一の位の数字の並びのことです。例えば,1729の下2桁は29で,1903の下2桁は03です。
(4)<53>の下3桁は992です。<N>の下3桁が872となるNを2つ求めなさい。ここで,下3桁とは百の位から一の位までの数字の並びのことです。
(1)2をかけていくことを考えます。
一の位には十以上の位の数字から影響を受けません。
一の位だけ考えて
<1>は2
<2>は2×2=4
<3>は4×2=8
<4>は8×2=16で6
<5>は6×2=12で2
より<1>と<5>で一の位が等しいので2,4,8,6の周期4の繰り返しとなります。
1895÷4=473…あまり3
より<1895>の一の位は<3>の一の位と等しくて8とわかります。
(2)<12>+<2>=4096+4=4100
<13>+<3>=2×4100=8200
(3)麻布の最後の問題で(2)が関係ないということはあまりありません。
<2018>の下2桁を答えなさいと言うことですが,まずは(2)を使うのではないかと考えます。
(2)では<○+10>+<○>=(100の倍数)とよみとれます。
これは<○>の下2桁をNとすると、<○+10>の下2桁は100-Nと解釈できます。
すると<○+10>+<○+20>=(100の倍数)も成り立つので<○+20>の下2桁はNとわかり周期は20です。
2018÷20=100あまり18
より<2018>の下2桁は<18>の下2桁と同じです。
さらに<8>=256からこの下2桁は56
<18>の下2桁は100-56=44
なので<2018>の下2桁は44とわかります。
(4)(3)と同じようにできないか考えてみます。
992や872という数字ではピンとこないで逆を考えてみます。
1000-992=8,1000-872=128
これは<3>と<7>ですね。
992+8=1000から
<53>+<3>=(1000の倍数)
より
<○+50>+<○>=(1000の倍数)
とわかりました。
と言うことは同じように<○>の下3桁がNならば,<○+50>の下3桁は1000-N,<○+100>の下3桁はNで周期100です。
<7>=128と872+128=1000より
<50+7>=<57>の下3桁は1000-128=872とわかります。
周期100なので<57+100>=<157>の下3桁も872とわかります。
(注…数学的な背景としては
まず余りをマイナスまで拡張して考えて,<0>=1と定義します。
aのb乗をa^bと書くことにします。
また10=2×5,100=(2の2乗)×25,1000=(2の3乗)×125より5,25,125で割ったあまりを考えます。
さらに二項定理の展開を考えて
(pm+r)^p=Σ(k=2~p)pCk・(pm)^k・r^(p-k)+pm・pC1・r^(p-1)+pC0・r^p=(p^2の倍数)+r^p
より
((pで割るとあまりがrの自然数)^pをp^2で割ったあまり)=(r^pをp^2で割ったあまり)
であることを使います。
2^2=4は5で割ったあまりは-1
2^10=(2^2)^5=(5で割るとあまり-1)^5を25で割ったあまりが-1
2^50=(2^10)^5=(25で割るとあまり-1)^5を125で割ったあまりが-1であることから
<2>+<0>=(10の倍数)より<○+2>+<○>=(10の倍数)
<10>+<0>=(100の倍数)より<○+10>+<○>=(100の倍数)
<50>+<0>=(1000の倍数)より<○+50>+<○>=(1000の倍数)
となります。)
具体的に計算して実験してみたり、前の問いが誘導になっていないか?麻布の最後の問題らしい問題なので麻布対策に練習してみてください(畠田)
お問い合わせは
【関西】0798-65-3990
【関東】03-5731-8390