数理教育研究会

ラサール

ラ・サール中学校その2 入試分析 算数 2018(H30)

今回もラ・サールの問題をもう一つとりあげたいと思います。

立体図形の問題で、難しいわけではないけど切り口がどのようになるか考えていく過程にポイントがあります。

(問題)H30 ラ・サール中学校 算数 大問6
rasa2018m1.jpg
図のような立方体の頂点Aから、3つの点P,Q,Rが同時に出発し、PはA-B-C-G、QはA-D-H-G,RはA-E-F-Gの順に、それぞれ辺上を同じ一定の速さで移動して、12秒後に点Gに着きます。3点P,Q,Rを通る平面でこの立方体を切ったときの切り口の面積をSとするとき、出発して4秒後のSは12㎠でした。このとき、次の場合のSは何㎠ですか。

(1)出発して3秒後
(2)出発して6秒後
(3)出発して7秒後

(1)12秒で3辺分進むので,4秒で1辺分進みます。

rasa2018k1.jpg
図において4秒後は青い三角形,3秒後は黒い三角形になるので相似比は
(青い三角形):(黒い三角形)=4:3
面積の比は
(青い三角形の面積):(黒い三角形の面積)=4×4:3×3
=16:9
よって青い三角形の面積は12㎠から
(黒い三角形の面積)=12×9/16
6.75㎠

(2)6秒後の動点は辺の中点になりますが,どれも同じ平面上にないので切り口を考えるのが難しいです。
rasa2018k21.jpg
そこでRとPの2点を結んだ線分を延長して面DHGCを含む平面との交点と点Qを結ぶとDCの中点(赤い点)を通ることがわかります。
rasa2018k22.jpg
ここまでこれば,正六角形になるとわかりますね。
(赤の正三角形の1辺の長さ):(青の正六角形の1辺の長さの)=1:2
です。

rasa2018k23.jpg
よって図より小正三角形の個数に注目して
(赤の正三角形の面積):(青の正六角形の面積)=4:6=2:3
(青の正六角形の面積)=12×3/2=18㎠

となります。

(3)同じように7秒後を考えたらよいわけですが、ここで(1)(2)から3秒後と4秒後と6秒後の切り口は全て平行になっていることに注目して解いてみます。
8秒後も切り口は平行になります。
rasa2018k3.jpg
と言うことは図のように3:1となる点を結んだ緑の平面になることがわかります。

rasa2018k31.jpg
小正三角形の個数を数えて
(青の正三角形の面積):(緑の六角形の面積)=16:22
=8:11
よって
(緑の六角形の面積)=12×11/8
16.5㎠
とわかりました。

わかりやすい値で具体的に切り口を考えてみると、解法の糸口がつかめて途中の切り口が見えてきます。
このようなアプローチの仕方も取り入れてみると、点数につながります(畠田)

ラ・サール中学校 入試分析 算数 2018(H30)

ラ・サールの問題を扱いたいと思います。

場合分けの整理の仕方など基礎的なことや、テクニックまで勉強になりそうな問題をとりあげます。

(問題)H30 ラ・サール中学校 算数 大問2(2)
何枚かのコインを横一列に並べます。3枚以上表が連続するところがある並べ方は何通りですか。次の場合について答えなさい。
(ア)5枚を並べるとき
(イ)6枚を並べるとき

(ア)
場合の数の問題は何か基準を決めて数えるのがポイントになります。
一つの方法として表の枚数で場合分けして数えてみましょう。

○を表,×を裏とします。
(a)表が3枚の時
○○○××
×○○○×
××○○○
の3通り

(b)表が4枚の時
○○○○×
○○○×○
○×○○○
×○○○○
の4通り

(c)表が5枚の時
○○○○○
の1通り

合計3+4+1=8通り

(イ)同じように表の枚数で場合分けして数えてみますが、更には何枚ずつにわかれるかを基準に整理してみます。

(a)表が3枚の時
○○○×××
×○○○××
××○○○×
×××○○○
の4通り

(b)表が4枚の時
○○○○××
×○○○○×
××○○○○
○○○×○×
○○○××○
×○○○×○
○×○○○×
○××○○○
×○×○○○
の9通り

(c)表が5枚の時
○○○○○×
○○○○×○
○○○×○○
○○×○○○
○×○○○○
×○○○○○
の6通り

(d)表が6枚の時
○○○○○○
の1通り

で合計20通りとなります。

このようにある基準で整理して漏れなく、ダブることなく数えることはあらゆる場合の数の問題に通じる大切なことです。

もう一つのアプローチの仕方として
3枚以上連続しない場合を数えて全体から引く
のように逆を考える方法もよくあるので、それでやってみましょう。

6枚の場合、全部で
2×2×2×2×2×2=64通り

左から考えてみると
×(5つの場合)
○×(4つの場合)
○○×(3つの場合)
と場合分けすることができます。

それでは5つの場合は
×(4つの場合)
○×(3つの場合)
○○×(2つの場合)
と場合分けすることができます。

それでは4つの場合は
×(3つの場合)
○×(2つの場合)
○○×(1つの場合)

それでは3つの場合は
×(2つの場合)
○×(1つの場合)
○○×

それでは2つの場合は
×(1つの場合)
○×
○○

それでは1つの場合は

×
の2通りです。

と言うことは
(2つの場合)=(1つの場合)+1+1
=2+1+1
=4

(3つの場合)=(2つの場合)+(1つの場合)+1
=4+2+1
=7

(4つの場合)=(3つの場合)+(2つの場合)+(1つの場合)
=7+4+2
=13

(5つの場合)=(4つの場合)+(3つの場合)+(2つの場合)
=13+7+4
=24

(6つの場合)=(5つの場合)+(4つの場合)+(3つの場合)
=24+13+7
=44

よって
64-44=20通り
と求まります。

※前2つの場合の数の和になる数のことをフィボナッチ数と言ったように
今回の前3つの場合の数の和になる数のことをトリボナッチ数と言います。
フィボナッチ数 1,1,2,3,5,8,13,21,34,55,89,…
トリボナッチ数 1,1,2,4,7,13,24,44,81,…

整理する方法など基礎的な練習と、アプローチの仕方のテクニックを勉強することで得点に反映されます。
がんばりましょう(畠田)

PAGE TOP