数理教育研究会

入試問題解説

灘中学校 算数(2日目)2019(H31)入試分析 その3

前回の続きで灘中学校、2019年度算数2日目大問4,大問5をとりあげます。

大問4は高校数学の整数問題で普通に解ける問題ですが誘導に載って解いたとしても,基本的な考え方は素因数分解で,素因数分解の勉強になります。
大問5は立体をとらえるときに,高校数学では積分で体積を求めるときに断面を考えてますが,この問題も断面を考えることによって立体をとらえる問題です。類題がこれまで他の学校でも出題されてきましたが,断面の誘導が強く出ていて,断面で立体をとらえる勉強になります。

○大問4
どの辺の長さも,3cmのように整数に単位cmをつけて表される長方形を「整長方形」ということにします。ただし,正方形は整長方形に含めないことにします。

(1)整長方形の周の長さがa cm,面積がa cm^2であるとき,aにあてはまる整数は次の説明文のようにして求めることができます。空欄①,②,③に入る適当な数を答えなさい。
ただし,同じ番号の空欄には同じ数が入ります。

説明文
H31nada2-4-m1_20190219155601d69.jpg

右の図のように,整長方形ABCDがあり,周の長さはa cm,面積はa cm^2であるとします。
辺AB上に点P,辺BC上に点Q,辺CD上に点R,辺DA上に点Sを,直線PRと直線BCが平行で,直線SQと直線DCが平行になるようにとります。
BPの長さとSDの長さがどちらも[ ① ]cmであるとき,整長方形PBCRの面積と整長方形SQCDの面積の和はa cm^2になります。このとき,直線PRと直線SQが交わる点をTとすると,整長方形APTSの面積は[ ② ]cm^2になります。
このことから,整長方形APTSの直角をはさむ2辺の長さとして考えられるのは1cmと[ ② ]cmとなるため,aにあてはまる整数は[ ③ ]です。

(2)整長方形の周の長さがa cm,面積が(a×2)cm^2であるとき,aにあてはまる整数をすべて求めなさい。

(3)整長方形の周の長さがa cm,面積が(a×2+8)cm^2であるとき,aにあてはまる整数をすべて求めなさい。

[解説]
これは誘導に乗らなくても2辺の長さをx,y(x>y)とすれば
(1)はa=2×x+2×yで2×x+2×y=x×yという不定方式をとけばよくなります。
甲陽などでもx,yを自然数として2数の和と積が等しいx,yを求めろ(x+y=xyを解け)と言う問題がありましたが,同じように解けば
((xが2個分)+(yが2個分))は(xが4個分)より小さい
x×yを(xがy個分)と考えると,xは4個未満(3個以下)にならないといけなかったのでy=1,2,3のみ調べればよくなり(x,y)=(6,3)と解けました。
もっと数学の知識を使って式変形をすると
(x-2)×(y-2)=4
とやって4の約数の組みあわせを考えて
(x-2,y-2)=(4,1)より(x,y)=(6,3)とすぐに出ます。
(2)は4×x+4×y=x×yを解けばよく(x-4)×(y-4)=16と変形して(x-4,y-4)=(16,1),(8,2)より(x,y)=(20,5),(12,6)
(3)も4×x+4×y+8=x×yを解けばよく(x-4)×(y-4)=24と変形して(x-4,y-4)=(24,1),(12,2),(8,3),(6,4)と求めていけます。

誘導の意図をつかむ時間よりも安定して解けるので,このようにまず泥臭く勉強して解いて点数の最低値を底上げすることも合格するのに大切だと思います。

今回は問題の意図に沿って誘導に乗って解く方法を解説したいと思います。
(1)PBとSCの長さが等しいので長方形PBCRと長方形SQCDを並べて図のように長い長方形することが出来てこの面積がa cm^2になります。
H31nada2-4-kaisetu1 (1)
この長い長方形は底辺の長さが周の半分でa÷2 cmで,高さを☐ cmとすると
(a÷2)×☐=a
なので☐=2とわかります。
正方形TQCRは2×2=4なので
(長方形ABCD)=(長方形APTS)+(長方形PBCR)+(長方形SQCD)-(正方形TQCR)
より
a=(長方形APTS)+a-4
なので長方形APTSの面積は4cm^2とわかります。
よって1×4の組み合わせしかないのでa=((1+2)+(4+2))×2=18とわかりました。

(2)同じように
(a÷2)×☐=2×aから☐=4で長方形APTSの面積は4×4=16
16=1×16,2×8より
aは((1+4)+(16+4))×2=50と((2+4)+(8+4))×2=36

(3)同じように
(a÷2)×☐=2×aから☐=4で長方形APTSの面積は4×4+8=24になればよいので
24=1×24,2×12,3×8,4×6よりaは
((1+4)+(24+4))×2=66,((2+4)+(12+4))×2=44,((3+4)+(8+4))×2=38,((4+4)+(6+4))×2=36
とわかりました。

○大問5
一辺の長さ4cmで中身がつまった2つの立方体A,Bがあります。立方体Cは一辺の長さが12cmで,はじめ,図のように立方体Aの上面は立方体Cの上面の㋐に,立方体Bの上面は立方体Cの上面の㋒に重なっています。立方体Aは回転することなく一定方向に進み,下面が立方体Cの下面の㋑に到着しました。そののち,立方体Bは回転することなく一定方向に進み,下面が立方体Cの下面の㋓に到着しました。このとき,立方体Aが通過した部分をX,立方体Bが通過した部分をYとして,XとYが重なった部分をZとします。
H31nada2-5-m1.jpg

(1)右の図は,立方体Cの下面から9cmの高さにある平面でZを切ったときの真上から見た切り口をかき入れたものです。その平面と面PQRSの交わりを太線で表しています。立方体Cの下面から8cm,7cm,6cmの高さにある平面でZを切ったときの真上から見た切り口を,右の図にならってそれぞれかき入れなさい。
H31nada2-5-m2.jpg

解答欄
H31nada2-5-m3.jpg

(2)Zのうち,立方体Cの下面から8cmの高さにある平面と10cmの高さにある平面ではさまれた部分の体積を求めなさい。

(3)Zのうち,立方体Cの下面から6cmの高さになる平面と8cmの高さにある平面ではさまれた部分の体積を求めなさい。

 

[解説]
類題が難関校でよく出ている問題です。
灘で出やすい分野、お題です。
XとYの共通部分の立体を考えて断面を調べるのではなく,XとYそれぞれの断面を考えてその共通部分を調べる
上面と下面の通過部分を考える
しっかり練習しておけばアプローチに迷うことはなかったと思います。

(1)XとYを別々に断面を考えてから共通部分をとります。
H31nada2-5-kaisetu3.jpg
H31nada2-5-kaisetu4.jpg
H31nada2-5-kaisetu5.jpg

断面において動かす立方体の上面が通ったところ,下面が通ったところを描いて対応する頂点を結べば断面ができます。
青がXの断面,赤がYの断面です。
青と赤の共通部分が求める断面になります。

(2)共通部分をイメージするのではなく断面を元に共通部分の立体をとらえます。
高さ8cm,9cmの断面はかいているので10cmの断面を考えてみると
H31nada2-5-kaisetu6.jpg
高さ10cmは立方体A,Bの最初の位置の下面より上なので,下面が最初の位置であると考えて描けばよく図のようになります。

XとYの共通部分は図の黒い線になります
これら高さが8cm,9cm,10cmの断面図から,黒い点が同じ位置にあることに注意して立体の図を描いてみます。
H31nada2-5-kaisetu1.jpg
底面積が4×2÷2=4cm^2,平均の高さが(4+4+4)÷3=4cmの断頭三角柱の部分と
青い部分の底面積が4×2÷2=4cm^2高さが2cmの三角すいに分けて考えて

4×4+4×2÷3=56/3cm^3
とわかります。

(3)高さ6cm,7cm,8cmの断面の図から考えて黒い点が同じ位置であることに注意すると
図のようになります
H31nada2-5-kaisetu2.jpg
対角線の長さが8cmずつの正方形を底面とした高さ2cmの直方体から
底面積が4×2÷2=4cm^2,高さが2cmの青い三角すい3つを取り除いて
8×8÷2×2-4×2÷3×3=56cm^3

とわかりました。(畠田)

灘中学校 算数(2日目)2019(H31)入試分析 その2

前回の灘中学校、2019年度算数2日目大問1と大問2に続いて大問3をとりあげます。

ただ単に頂点を通った光はどこに到達するか考えて結べばいいだけの問題ではなく,辺を通った光がどう到達するか考えないといけない問題なので,曖昧な理解を明確な理解にレベルアップさせてくれる非常に良い問題です。
きちんとした論理の組み立てとしては算数に役立つ数学的な空間図形で勉強になります。

○大問3
右の図のように,板①と板②が垂直に置かれています。板①と板②のつなぎ目の直線をXYとします。板①にかかれた正方形ABCDは一辺の長さが10cmです。また,直線ADと直線XYは平行で,ABとXYが交わる点をEとすると,AEの長さは10cmです。BFは長さが10cmで,板①に垂直であり,点Fに電球が置かれています。電球の大きさは考えないものとします。
H31nada2-3-m1.jpg

(1)
一辺の長さが10cmの正方形の板を,板②と平行に,1つの辺がADと重なるように置きます。板①と板②にできるこの正方形の板の影の面積の和は
[   ]cm^2です。ただし,板は光を通さず,板の厚さは考えないものとします。
H31nada2-3-m2.jpg

(2)
底辺の長さが10cmで高さが10cmの二等辺三角形の板を,板②と平行に,底辺がADと重なるように置きます。板①と板②にできる二等辺三角形の板の影を,例にならって右ページの上の図にかきいれなさい。
H31nada2-3-m3.jpg

H31nada2-3-m4.jpg

H31nada2-3-m5.jpg
解答欄

(3)
一辺の長さが10cmの正方形を底面とし,高さが10cmである四角すいの石像を,底面が正方形ABCDと重なるように置きます。この四角すいのA,B,C,D以外の頂点をOとすると,OA,OB,OC,ODの長さはすべて等しくなっています。この四角すいの石像の影が板①と板②にできます。
H31nada2-3-m6.jpg

(ア)板①と板②にできる四角すいの石像の影を,(2)の例にならって右の図に書きいれなさい。
H31nada2-3-m5.jpg
解答欄

(イ)板①と板②にできる四角すいの石像の影の面積の和を求めなさい。ただし,正方形ABCDは含めません。

[解説]
(1)は図のように真上から見た図でFとA,FとDを結んで直線を引いてXYとの交点E,E’をとり,AとDとEとE’と板②のFの影の2点の各点を結べばよく図のようになります。
H31nada2-3-kaisetu1.jpg

これで面積は20×20-10×10÷2=350cm^2と出せます。

ただ(2)と(3)では板①や②に垂直または平行ではない辺が出てくるので,影はどう求めればいいかできるもう少しはっきりさせる必要があります。

そこで辺による影が影の境界になるので
その辺の両端の点と点Fの3点を通る平面を考えて,その平面と板①や,その平面と板②の交線(平面が交わって出来る直線)が影の境界になります。

(2)
H31nada2-3-kaisetu2_201902161841476bb.jpg
二等辺三角形の頂点Gとして辺GAによる影は,3点F,G,Aを通る平面との交線になると考えます。すると直線FGと板①は平行なので板①にできる境界は点Aを通り直線FGと平行な直線上になります。
同じように考えて辺GD側による境界も,点Dを通り直線FGと平行な直線上になります。
H31nada2-3-kaisetu3.jpg
板②の方は板①に出来た影の境界とXY上の交点と,光が点Gを通って板②に到達した点をそれぞれ結んでこのようにできあがります。

(3)同じように辺OAによる影は,3点F,O,Aを通る平面との交線になると考えます。すると直線FOと板①は平行なので板①にできる境界は点Aを通り直線FOと平行な直線上になります。
辺OD側も同じです。
H31nada2-3-kaisetu4.jpg

板②の方も同様にしてこのようにできあがります。

面積はマス目14個分より5×5×14=350cm^2とわかります。(畠田)

灘中学校 算数(1日目)2019(H31)入試分析 その3

今回は灘中学、算数1日目の大問7をとりあげたいと思います。
一見N回目の出会いの問題に見えますが,出会いの度に折り返すし,速さも遅くなります。
文字など置いて力技で解くこともできて,それはそれで大事なことですが,算数の速さの問題としてもアプローチの仕方
『時間、距離、速さ、何が一定か』
『和と差を考えてみる』

に注目するという勉強になる良い問題と思います。

(問題)2019年度 灘中学校 算数第1日目 大問7
A地点とB地点を結ぶ道を,太郎君はAからBへ,次郎君はBからAへ向かって,それぞれ一定の速さで同時に走り始めました。2人の間の距離は3分間に1kmの割合で縮まりました。途中,2人はC地点で出会うとすぐに折り返し,速さをそれぞれ時速1kmだけおとして,来た道を戻りました。2人はそれぞれA,Bに到着してすぐに折り返し,Cよりも130mだけAに近いD地点で再び出会いました。Dで出会った2人はまたすぐに折り返し,速さをさらにそれぞれ時速1kmだけおとして,来た道を戻りました。そして,2人はそれぞれA,Bに到着してすぐに折り返し,Dよりも[   ]mだけAに近いE地点で出会いました。

[解説]
まず和を考えてみると

折り返してから出会いまでの太郎と次郎の進んだ長さの和が、AB二つ分で一定
→速さの和と時間が逆比

走り始めてから最初の出会いまではAB一つ分ですが二人ともC地点から太郎はAに次郎はBに向かって同時にスタートして折り返してきて1回目の出会いになったと考えれば太郎と次郎の進んだ長さの和がAB二つ分になるので扱いやすくなります。

H31nada1-7kaisetu1.jpg
二人の速さの和は
○~△:1÷3 km/分=1000/3 m/分
△~☐:1 km/時=1000/60 m/分=50/3 m/分ずつ遅くなるので1000/3-50/3×2=900/3 m/分
☐~●:300-50/3×3=800/3 m/分

距離が一定なので(○~△),(△~☐),(☐~●)の時間の比は

1000/3:900/3:800/3=10:9:8
なので速さの比は
9×8:8×10:10×9=36:40:45
となります。

次に差を考えてみると

太郎と次郎の速さの差は常に一定
→太郎と次郎の進んだ距離の差と時間が比例

太郎と次郎は1km/時ずつ遅くなっても,差はかわりません。
ということは太郎と次郎の進んだ距離の差は時間に比例します。

ABの中点をMとしてC,D,EをMについて対称移動した点をC’,D’,E’とすると太郎と次郎の進んだ距離の差は
○~△:CC’2つ分
△~☐:DD’2つ分
☐~●:EE’2つ分
それぞれ時間に比例するので36:40:45になります。

よって差の半分である図の青い線の部分も36:40:45になるのでそれぞれの長さを[36],[40],[45]とおくと
CM=[36÷2]=[18]
CD=[40]-[36]=[4]
ED=[45]-[40]-[4]=[1]
よってCD:ED=4:1よりED=130÷4=32.5m

(畠田)

灘中学校 算数(1日目)2019(H31)入試分析 その1

今年も入試問題解説をすることになりました。
よろしくお願いします。

最初は灘中学校の1日目です。

【入試資料分析】
まず今年の実質倍率は2.70です。
これはほぼほぼ例年程度でした。
(H24)2.81(H25)2.81(H26)2.97(H27)2.61
(H28)2.67(H29)2.76(H30)2.88(H31)2.70

次に平均点ですが注目すべきは算数です。
第1日目,2日目ともにここ数年で平均点が一番低く
平均点が高かった去年に比べて合計で30点ほど低くなっています。

(教科,受験者平均点,合格者平均点)の順に
(国語1日目,60.0点,63.6点)
(国語2日目,69.1点,75.1点)
(国語合計,129.1点,138.7点)
(算数1日目,38.5点,49.8点)
(算数2日目,44.5点,56.8点)
(算数合計,83.0点,106.6点)
(理科,64.5点,73.2点)
(総合,276.6点,318,6点)

全体的に難易度の高い問題が並びましたが,これは解くのに無理があるであろうというような問題はありませんでした。
算数をよく勉強してきた人にとっては,差をつけることが出来た試験であったと思われます。5割とることができたら,アドバンテージです。

【問題分析】
○大問1
(17-[   ]×77) × 2019/5 = 31+3/5-7/13

[解説]
計算問題です。
31+3/5-7/13 = 2019/65
2019/65 ÷ 2019/5 = 1/13
17-1/13 = 220/13
220/13÷77 = 20/91
素因数に注意して約分されることを意識することで素早く正確に解けます。

○大問2
[ア]/[イ] × [ウ]/[エ] = 1/[オ] の[ア]~[オ]に2,3,4,5,6,7,8,9の数から1つずつ当てはめて式を完成させました。ただし,同じ数を2回以上使うことはできません。また,[ア]/[イ]と[ウ]/[エ]は仮分数でもよく,これ以上約分できない分数です。このとき,[オ]に当てはまる数は[   ]です。

[解説]
5,7は5,7を約数に持つ整数が他にないので使えません。
残りの整数2,3,4,6,8,9において6だけ2と3の両方を約数に持つので[ア]/[イ],[ウ]/[エ]がこれ以上約分できない分数ということなので使えないので,入るとしたら[オ]だけです。
[ア]/[イ],[ウ]/[エ]がこれ以上約分できない分数となるには3の倍数を[ア]か[イ]のどちらか,[ウ]か[エ]のどちらかに入れることになるが,残りの3の倍数は3と9だけです。
つまり3の倍数は約分されずに残ることになるので[オ]は6以外ありません。
[オ]だけわかればよいので素早く6と答えられたら要領が良いですね。

○大問3
A,B,C,D,E,F,G,Hはどの2つも異なる2から9までの数字です。3桁の整数ABCとDEFを足すと4桁の整数10GHになり,この足し算で繰り上がりは百の位から千の位にだけあるとき,GとHの和は[ ① ]です。さらにこのとき,AがDより大きいとすると,ABCとして考えれる3桁の整数は全部で[ ② ]個あります。

[解説]
各桁の数に関する問題のアプローチは筆算や,各桁の数の関係式を作るなどが考えられます。
この問題は足し算で繰り上がりが百の位から千の位にだけあると書いてあるので各桁の数の関係式がたてやすいです。
百の位A+D=10,十の位B+E=G,一の位C+F=H
またA,B,C,D,E,F,G,Hは2から9のどれかですが、このことはよく全部足すと2+3+4+5+6+7+8+9=44で
A+B+C+D+E+F+G+H=44であるという使い方をよくします。
すると10+G+G+H+H=44でG+H=17とわかり,しかも(G,H)は(8,9)か(9,8)の場合しかありません。
A+D=10,A>Dより(A,D)=(7,3),(6,4)
(A,D)=(7,3)の時,残り2,4,5,6で和が8と9になる組み合わせは
2+6=8,4+5=9
よって(G,H)=(8,9)の時は(B,E)=(2,6),(8,6)の2通り,(C,F)=(4,5),(5,4)の2通り
(G,H)=(9,8)の時は(B,E)=(4,5),(5,4)の2通り,(C,F)=(2,6),(6,2)の2通り
で合計2×2×2=8個
(A,D)=(6,4)の時,残り2,3,5,7で和が8と9になる組み合わせは
3+5=8,2+7=9
よって同様に8個で
8+8=16個となります。
灘の1日目でよくある問題なので練習しておきましょう。

○大問4
これはこちらの記事で解説したいと思います。
http://edupastaff.blog82.fc2.com/blog-entry-545.html

○大問5
ある品物を仕入れ,利益を見込んで1個400円で売りました。しかし,いくつか売れ残ったため,売値を半額の200円にして残りをすべて売りました。その結果,売上高は26000円,利益は11600円になりました。品物1個の仕入れ値は1円未満の端数はありません。また,400円で売れた品物の個数は仕入れた品物の個数全体の6割より多く,7割より少ないことがわかっています。このとき,品物1個の仕入れ値は[ ① ]円で,400円で売れた品物の個数は[ ② ]個です。

[解説]
合計の仕入れ値は26000-11600=14400円で
合計の仕入れ値と売上高がわかっています。
よって品物1個の仕入れ値と品物1個の平均の定価の比がわかるのがポイントです。
(仕入れ値):(平均定価)=14400:26000
=36:65
仕入れ値と個数は整数より仕入れ値は14400の約数になります。
400円が6割,200円が4割の時,平均定価は400×0.6+200×0.4=320円で仕入れ値は320×36/65=177.2…
400円が7割,200円が3割の時,平均定価は400×0.7+200×0.3=340円で仕入れ値は340×36/65=188.3…
よって仕入れ値は178,179,…,188のどれかで14400の約数なので180円
合計の品物の個数は14400÷180=80個
400円で売れた品物の個数はつるかめ算より(26000-200×80)÷(400-200)=50個
算数として何か勉強になるように算数的に解きましたが,本番は数式で力技で計算して答えを出すことも大切です。

○大問6
89の倍数と113の倍数を,
89,113,178,226,……
のように小さいものから順に並べるとき,50番目の倍数は[   ]です。

[解説]
50番目までの(89の個数)と(113の個数)は
89×(89の個数)=113×(113の個数)で目星を付けると
(89の個数):(113の個数)=113:89
(89の個数)+(113の個数)=50
より
(89の個数)=50×113/(113+89)=27.97…,(113の個数)=50×89/(113+89)=22.02…
なので89の27倍と113の22倍付近を調べると
89×27=2403,89×28=2492
113×22=2486,113×23=2599
より50番目の数は2492
89-1=8×11,113-1=8×14で11と14では綺麗に50×14/(11+14)=28,50×11/(11+14)=22番目と綺麗に求まることから,89と113の比を考えて最後に調整しろというのがこの問題の意図なのかもしれません。

○大問7
これはこちらの記事で解説したいと思います。
http://edupastaff.blog82.fc2.com/blog-entry-546.html

○大問8
右の図のような点Oを中心とする円について,斜線部分の面積の和は[   ]cm^2です。

H31nada1-8shukushou.jpg

[解説]
まず図のように長さがわかります。
H31nada1-8kaisetu1.jpg

円の半径をAとすると
A×A=5×5×2=50
二つの直角三角形の面積の和は
12×4÷2+6×2÷2=30cm^2

H31nada1-8kaisetu2.jpg

図の斜線部の面積○+☐+△×2は円から2cm×10cmの長方形をのぞいた半分になっているので
斜線部の面積は137
(A×A×3.14-2×10)÷2=68.5cm^2
よって求める面積は斜線部の面積から直角三角形を2つ取り除いて
68.5-30=38.5cm^2
今年(2019年度)の甲陽学院の算数第1日目の平面図形でも使われたよくある処理です。
きっちり典型問題を勉強しておくということと,似たような問題と同じように解けないかアプローチの練習をしておきましょう。

○大問9
右の図で,三角形ABCは正三角形で,面積は1cm^2です。PBの長さがPAの長さの2倍のとき,三角形CPAの面積は[   ]cm^2
H31nada1-9.jpg

[解説]
正三角形の面積の問題なので正三角形のマス目が何個あるかということになるので正三角形方眼紙で考えます。
H31nada1-9kaisetu.jpg

図より三角形APBの形をした三角形は正三角形のマス目4個分の半分よりマス目1個分の面積を[1]とすると三角形ABCの面積は[4]÷2×3+[1]=[7],三角形CAPの面積はマス目1個分の面積より[1]で三角形ABCの1/7倍。よって1/7cm^2となります。

○大問10
表面が青色で塗られている正四面体を,底辺に平行な2枚の平面で高さを3等分するように切り,残りの3つの面についても同様に切ります。このとき,もとの正四面体はいくつかの正四面体といくつかの正八面体に分かれます。2つの面に色が塗られている立体は全部で[ ① ]個あり,3つの面に色が塗られている立体は全部で[ ② ]個あります。
ただし,正四面体とは,右の図1のような,どの面も合同な正三角形でできている三角すいです。また,正八面体とは,右の図2つのような,どの面も合同な正三角形でできている,8つの面をもつ立体です。
H31nada1-10.jpg

[解説]
まず2等分の場合は正四面体4個と正八面体1個ができました。
H31nada1-10kaisetu1.jpg

それを参考にして図のように3等分の上の2段だけで考えると,3面塗られている正四面体1個,3面塗られている正八面体1個,2面塗られている正四面体が3個あります。
3面塗られている正方形と正八面体は1個の頂点に1セット対応(○で表す),2面塗られている正四面体は1つの辺に1個対応(△)であわらします。
H31nada1-10kaisetu2.jpg
すると全体では2面塗られいるのは辺が6つより6個
3面塗られいてるのは頂点が4つより2×4=8個とわかります。

H31nada1-10kaisetu3.jpg
問われてはいませんが○と△を取り除いていくと,上から3段目に図のように太い線を面とした塗られている面のない正四面体が1個残ります。
灘や難関校でよくある問題で,知っているものを使って解きましょう。

○大問11
展開図が右の図のような立体の体積は[   ]cm^3です。ただし,実線で囲まれた三角形は3つの大きな直角二等辺三角形,3つの正三角形,3つの小さな直角二等辺三角形です。また,3本の破線は小さな直角二等辺三角形の2本の辺の真ん中を結ぶ直線です。折り方は,直角の印以外の実線が山折りで破線が谷折りです。

H31nada1-11.jpg

[解説]
図のように四面体の中に四面体の穴があり,更にその四面体も頂点で内側に四面体状に折られています。
H31nada1-11kaisetu1.jpg
これらの四面体は全て3面が直角二等辺三角形で相似です。

H31nada1-11kaisetu2.jpg

直角二等辺三角形の1辺が1cmの四面体の体積は1×1÷2×1÷3=1/6 cm^2
体積の比は大きい順に
4×4×4:2×2×2:1×1×1=64:8:1より
(64-8+1×2)×1/6=29/3cm^3
展開図の問題は定番で,この形は立方体から切り落としたもの,基本的な立体を組み合わせたものなどよくあるパターンを過去問で慣れておけばやりやすい問題です。

○大問12
右の図の六角すいは,底面が正六角形でOはその中心です。頂点Pと点QはどちらもOの真上にあり,PQの長さはQOの長さの2倍です。3点A,B,Qを通る平面でこの六角すいを切り2つの立体に分けるとき,頂点Pを含む方の立体の体積はもとの六角すいの体積の[   ]倍です。

H31nada1-12.jpg

[解説]
問題の図を見ると底面の正六角形が正三角形に分割されているのでPを頂点とした6つの三角すいを考えて,それらを切断して頂点Pを持つ3辺の比がそれぞれa倍,b倍,c倍になると体積はa×b×c倍になることを使うことが考えられます。
H31nada1-12kaisetu1.jpg
図のようにABの中点M,DEの中点Nとすると三角形PMNにおいてA,B,Qを通る切断面とPNの交点RはPNの中点になっています。
H31nada1-12kaisetu2.jpg
よって一つの三角すいの体積は全体の1/6より
1/6×2/3×(2/3×1+1×1+2/3×1+2/3×1/2+1/2×1/2+2/3×1/2)=13/36倍
難問ではなく標準的な問題を組み合わせた問題でしたが,よくある処理が使えないかを考えて,それを使うためには何がわかれば良いのか解法の過程が問われる良い問題です。(畠田)

PAGE TOP